Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Sensors (Basel). 2022 May 21;22(10):3913. doi: 10.3390/s22103913.
Wireless Underground Sensor Networks (WUSNs) that collect geospatial in situ sensor data are a backbone of internet-of-things (IoT) applications for agriculture and terrestrial ecology. In this paper, we first show how WUSNs can operate reliably under field conditions year-round and at the same time be used for determining and mapping soil conditions from the buried sensor nodes. We demonstrate the design and deployment of a 23-node WUSN installed at an agricultural field site that covers an area with a 530 m radius. The WUSN has continuously operated since September 2019, enabling real-time monitoring of soil volumetric water content (VWC), soil temperature (ST), and soil electrical conductivity. Secondly, we present data collected over a nine-month period across three seasons. We evaluate the performance of a deep learning algorithm in predicting soil VWC using various combinations of the received signal strength (RSSI) from each buried wireless node, above-ground pathloss, the distance between wireless node and receive antenna (D), ST, air temperature (AT), relative humidity (RH), and precipitation as input parameters to the model. The AT, RH, and precipitation were obtained from a nearby weather station. We find that a model with RSSI, D, AT, ST, and RH as inputs was able to predict soil VWC with an R of 0.82 for test datasets, with a Root Mean Square Error of ±0.012 (m/m). Hence, a combination of deep learning and other easily available soil and climatic parameters can be a viable candidate for replacing expensive soil VWC sensors in WUSNs.
无线地下传感器网络(WUSN)用于收集地理空间原位传感器数据,是物联网(IoT)在农业和陆地生态学应用中的一个重要组成部分。在本文中,我们首先展示了 WUSN 如何在全年野外条件下可靠运行,同时可用于从埋入式传感器节点确定和绘制土壤状况。我们展示了一个 23 节点的 WUSN 的设计和部署,该 WUSN 安装在一个农业现场,覆盖半径为 530 米的区域。自 2019 年 9 月以来,该 WUSN 一直在持续运行,实现了土壤体积含水量(VWC)、土壤温度(ST)和土壤电导率的实时监测。其次,我们展示了在三个季节中收集的九个月的数据。我们评估了一种深度学习算法在使用每个埋入式无线节点的接收信号强度(RSSI)、地面路径损耗、无线节点和接收天线之间的距离(D)、ST、空气温度(AT)、相对湿度(RH)和降水等各种组合作为模型输入参数来预测土壤 VWC 的性能。AT、RH 和降水是从附近的气象站获得的。我们发现,一个具有 RSSI、D、AT、ST 和 RH 作为输入的模型,能够以 0.82 的 R 对测试数据集进行土壤 VWC 预测,均方根误差为±0.012(m/m)。因此,深度学习和其他易于获取的土壤和气候参数的组合可以成为 WUSN 中替代昂贵的土壤 VWC 传感器的可行候选方案。