Maksymov Ivan S, Huy Nguyen Bui Quoc, Pototsky Andrey, Suslov Sergey
Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Sensors (Basel). 2022 May 22;22(10):3921. doi: 10.3390/s22103921.
Frequency combs (FCs)-spectra containing equidistant coherent peaks-have enabled researchers and engineers to measure the frequencies of complex signals with high precision, thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In particular, our discussion is centred around potential applications of AFCs in precision measurements in various physical, chemical and biological systems in conditions where using light, and hence optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater distance measurements and biomedical imaging applications. This review article will also be of interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To that end, we support the mainstream discussion by the results of our original analysis and numerical simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal nanostructures. We also discuss the application of non-toxic room-temperature liquid-metal alloys in the field of AFC generation.
频率梳(FCs)——包含等距相干峰的光谱——使研究人员和工程师能够高精度地测量复杂信号的频率,从而彻底改变了传感、计量和通信领域,也造福于基础科学。尽管到目前为止,大多数光学频率梳已得到广泛应用,但一般来说,频率梳可以使用光以外的波来产生。在这里,我们回顾并总结了声学频率梳(AFCs)新兴领域的最新成果,包括声子频率梳以及相关的声光、布里渊光散射和基于法拉第波的技术,这些技术推动了声子激光器、量子计算机和先进振动传感器的发展。特别是,我们的讨论集中在AFCs在各种物理、化学和生物系统的精密测量中的潜在应用,在这些情况下,使用光以及因此使用光学频率梳面临技术和基本限制,例如在水下距离测量和生物医学成像应用中就是这种情况。这篇综述文章对于寻求讨论不同类型AFCs特定理论方面的读者也会有吸引力。为此,我们通过我们的原始分析和数值模拟结果来支持主流讨论,这些结果可用于设计利用液体中气泡振荡、液滴振动和金属纳米结构中布里渊光散射的等离子体增强产生的AFCs光谱。我们还讨论了无毒室温液态金属合金在AFC生成领域的应用。