Suppr超能文献

HIV RGB:基于 KNIME 图像处理的 HIV-1 Rev 依赖性 RNA 核输出和翻译的自动化单细胞分析。

HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export and Translation Using Image Processing in KNIME.

机构信息

McArdle Laboratory for Cancer Research (Department of Oncology), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA.

Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Viruses. 2022 Apr 26;14(5):903. doi: 10.3390/v14050903.

Abstract

Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus−host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time. Differentially tagged fluorescent viral RNA and protein species are recorded using multicolor long-term (>24 h) time-lapse video microscopy, followed by image processing using a new open-source computational imaging workflow dubbed “Nuclear Ring Segmentation Analysis and Tracking” (NR-SAT) based on ImageJ plugins that have been integrated into the Konstanz Information Miner (KNIME) analytics platform. We describe a typical HIV RGB experimental setup, detail the image acquisition and NR-SAT workflow accompanied by a step-by-step tutorial, and demonstrate a use case wherein we test the effects of perturbing subcellular localization of the Rev protein, which is essential for viral US RNA nuclear export, on the kinetics of HIV-1 late-stage gene regulation. Collectively, HIV RGB represents a powerful platform for single-cell studies of HIV-1 post-transcriptional RNA regulation. Moreover, we discuss how similar NR-SAT-based design principles and open-source tools might be readily adapted to study a broad range of dynamic viral or cellular processes.

摘要

单细胞成像已成为研究病毒复制动态和鉴定病毒-宿主相互作用部位的有力手段。病毒复制周期的多变量方面对处理大型、复杂的成像数据集带来了固有挑战。在此,我们描述了一种自动化的基于成像的策略——“人类免疫缺陷病毒红绿蓝”(HIV RGB)的设计和实现,用于对 HIV-1 未剪接(US)RNA 核输出、翻译以及病毒 RNA 和蛋白质(HIV-1 Rev 和 Gag)亚细胞分布的整体变化进行全面的单细胞测量。使用多色长时(>24 h)延时视频显微镜记录差异标记的荧光病毒 RNA 和蛋白质种类,然后使用基于 ImageJ 插件的新开源计算成像工作流程“核环分割分析和跟踪”(NR-SAT)进行图像处理,该工作流程已集成到 Konstanz Information Miner(KNIME)分析平台中。我们描述了一个典型的 HIV RGB 实验设置,详细介绍了图像采集和 NR-SAT 工作流程,并附有分步教程,还展示了一个应用案例,其中我们测试了扰乱 Rev 蛋白亚细胞定位对 HIV-1 晚期基因调控动力学的影响,Rev 蛋白对 HIV-1 US RNA 的核输出至关重要。总之,HIV RGB 是研究 HIV-1 转录后 RNA 调控的单细胞研究的强大平台。此外,我们还讨论了如何轻松采用基于类似 NR-SAT 的设计原则和开源工具来研究广泛的动态病毒或细胞过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db3d/9145009/b8a47ee91d99/viruses-14-00903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验