Suppr超能文献

全身炎症反应指数对急性缺血性脑卒中患者早期神经功能恶化的预测价值。

Predictive values of systemic inflammatory responses index in early neurological deterioration in patients with acute ischemic stroke.

机构信息

Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, Heilongjiang, China.

出版信息

J Integr Neurosci. 2022 May 13;21(3):94. doi: 10.31083/j.jin2103094.

Abstract

BACKGROUND

Acute ischemic stroke (AIS) is the main cause of worldwide death and disability. Early neurological deterioration (END) can further increase the probability of death and disability in patients with ischemic stroke. Therefore, it is essential to find biomarkers to predict END early. Inflammatory response plays a crucial role in determining the course, outcome, and prognosis of END. Earlier studies focused on the relationship between routine hematological inflammatory markers and END, which limited the results. At present, relatively new and comprehensive markers of inflammatory response are relatively scarce. In this study, we investigate the predictive value of inflammatory markers in acute ischemic stroke cases for END which include systemic inflammatory response index (SIRI), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio (LMR), neutrophil/lymphocyte ratio (NLR), and then to establish a nomogram model.

METHODS

A total of 375 patients with AIS were analyzed who were admitted to the Second Affiliated Hospital of Harbin Medical University from September 2019 to June 2021. The associations between END and inflammatory markers were studied by employing the analysis of univariate. Following that, through regression models of the least absolute shrinkage and selection operator, the END risk model's feature selection was optimized. The development of the model of prediction was carried out by applying the multivariable logistic regression analysis. The calibration, discrimination, and clinical efficacy of the prediction model were studied via calibration plot, C-index, and decision curve analysis (DCA). The bootstrapping validation method was used for the evaluation of internal validation.

RESULTS

We constructed a nomogram consisting of CRP, monocytes, NIHSS and SIRI. This model had desirable calibration and discrimination, with a C-index of 0.757 (95% confidence interval: 0.702-0.805). Interval validation could still achieve the higher C-index value of 0.747. When the risk threshold for END was greater than 13% but less than 84%, DCA proved to be clinically useful.

CONCLUSIONS

Our research shows that SIRI can be used as a new predictor of END, as well as a monitor of treatment response. Compared with the traditional single inflammatory indicator, the integration of SIRI nomogram can predict the occurrence of END more objectively and reliably.

摘要

背景

急性缺血性脑卒中(AIS)是全球死亡和残疾的主要原因。早期神经功能恶化(END)可进一步增加缺血性脑卒中患者的死亡和残疾概率。因此,寻找能够早期预测 END 的生物标志物至关重要。炎症反应在决定 END 的病程、结局和预后方面起着关键作用。早期的研究侧重于常规血液炎症标志物与 END 之间的关系,这限制了研究结果。目前,炎症反应的相对较新和全面的标志物相对较少。本研究旨在探讨炎症标志物在急性缺血性脑卒中患者中对 END 的预测价值,包括全身炎症反应指数(SIRI)、血小板/淋巴细胞比值(PLR)、淋巴细胞/单核细胞比值(LMR)、中性粒细胞/淋巴细胞比值(NLR),并建立预测模型。

方法

对 2019 年 9 月至 2021 年 6 月在哈尔滨医科大学附属第二医院住院的 375 例 AIS 患者进行分析。采用单因素分析研究 END 与炎症标志物之间的关系。然后,通过最小绝对收缩和选择算子回归模型对 END 风险模型的特征进行优化选择。通过多变量逻辑回归分析建立预测模型。通过校准图、C 指数和决策曲线分析(DCA)研究预测模型的校准、区分和临床效能。采用 bootstrap 验证方法进行内部验证。

结果

构建了包含 CRP、单核细胞、NIHSS 和 SIRI 的列线图预测模型。该模型具有良好的校准度和区分度,C 指数为 0.757(95%置信区间:0.702-0.805)。区间验证仍可达到较高的 C 指数值 0.747。当 END 风险阈值大于 13%但小于 84%时,DCA 证明具有临床意义。

结论

本研究表明 SIRI 可作为 END 的新预测指标,同时也是治疗反应的监测指标。与传统的单一炎症指标相比,SIRI 列线图的整合可以更客观、更可靠地预测 END 的发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验