Suppr超能文献

应用预警指标预测经历多重变化的湖泊中的关键转折点。

Applying early warning indicators to predict critical transitions in a lake undergoing multiple changes.

机构信息

Department of Biology, Trent University, Peterborough, Ontario, Canada.

Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada.

出版信息

Ecol Appl. 2022 Oct;32(7):e2685. doi: 10.1002/eap.2685. Epub 2022 Jul 24.

Abstract

Lakes are dynamic ecosystems that can transition among stable states. Since ecosystem-scale transitions can be detrimental and difficult to reverse, being able to predict impending critical transitions in state variables has become a major area of research. However, not all transitions are detrimental, and there is considerable interest in better evaluating the success of management interventions to support adaptive management strategies. Here, we retrospectively evaluated the agreement between time series statistics (i.e., standard deviation, autocorrelation, skewness, and kurtosis-also known as early warning indicators) and breakpoints in state variables in a lake (Lake Simcoe, Ontario, Canada) that has improved from a state of eutrophication. Long-term (1980 to 2019) monitoring data collected fortnightly throughout the ice-free season were used to evaluate historical changes in 15 state variables (e.g., dissolved organic carbon, phosphorus, chlorophyll a) and multivariate-derived time series at three monitoring stations (shallow, middepth, deep) in Lake Simcoe. Time series results from the two deep-water stations indicate that over this period Lake Simcoe transitioned from an algal-dominated state toward a state with increased water clarity (i.e., Secchi disk depth) and silica and lower nutrient and chlorophyll a concentrations, which coincided with both substantial management intervention and the establishment of invasive species (e.g., Dreissenid mussels). Consistent with improvement, Secchi depth at the deep-water stations demonstrated expected trends in statistical indicators prior to identified breakpoints, whereas total phosphorus and chlorophyll a revealed more nuanced patterns. Overall, state variables were largely found to yield inconsistent trends in statistical indicators, so many breakpoints were likely not reflective of traditional bifurcation critical transitions. Nevertheless, statistical indicators of state variable time series may be a valuable tool for the adaptive management and long-term monitoring of lake ecosystems, but we call for more research within the domain of early warning indicators to establish a better understanding of state variable behavior prior to lake changes.

摘要

湖泊是动态的生态系统,可以在稳定状态之间转变。由于生态系统规模的转变可能有害且难以逆转,因此能够预测状态变量即将发生的关键转变已成为一个主要的研究领域。然而,并非所有转变都是有害的,人们对更好地评估管理干预措施的成功以支持适应性管理策略的兴趣也很大。在这里,我们回顾性地评估了时间序列统计数据(即标准差、自相关、偏度和峰度——也称为预警指标)与安大略省西蒙湖(加拿大)状态变量中的转折点之间的一致性,该湖的富营养化状态已经得到改善。长期(1980 年至 2019 年)监测数据每两周在整个无冰季节收集一次,用于评估西蒙湖 15 个状态变量(例如溶解有机碳、磷、叶绿素 a)和多维衍生时间序列的历史变化在西蒙湖的三个监测站(浅、中深、深)。来自两个深水站的时间序列结果表明,在此期间,西蒙湖从藻类占主导地位的状态转变为具有更高水清晰度(即塞奇盘深度)和硅以及较低养分和叶绿素 a 浓度的状态,这与大量管理干预和入侵物种的建立(例如,贻贝)相吻合。与改善一致,深水站的塞奇深度在确定的转折点之前显示出统计指标的预期趋势,而总磷和叶绿素 a 则显示出更为微妙的模式。总体而言,状态变量在统计指标上主要表现出不一致的趋势,因此许多转折点可能不是传统二分叉关键转变的反映。尽管如此,状态变量时间序列的统计指标可能是湖泊生态系统适应性管理和长期监测的有价值工具,但我们呼吁在预警指标领域进行更多研究,以在湖泊变化之前更好地了解状态变量的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5acd/9788049/023b014f52c2/EAP-32-e2685-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验