Suppr超能文献

用于唐氏综合征痴呆症研究的联合标签融合脑图谱。

Joint-label fusion brain atlases for dementia research in Down syndrome.

作者信息

Queder Nazek, Phelan Michael J, Taylor Lisa, Tustison Nicholas, Doran Eric, Hom Christy, Nguyen Dana, Lai Florence, Pulsifer Margaret, Price Julie, Kreisl William C, Rosas Herminia D, Krinsky-McHale Sharon, Brickman Adam M, Yassa Michael A, Schupf Nicole, Silverman Wayne, Lott Ira T, Head Elizabeth, Mapstone Mark, Keator David B

机构信息

Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA.

Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA.

出版信息

Alzheimers Dement (Amst). 2022 May 25;14(1):e12324. doi: 10.1002/dad2.12324. eCollection 2022.

Abstract

UNLABELLED

Research suggests a link between Alzheimer's Disease in Down Syndrome (DS) and the overproduction of amyloid plaques. Using Positron Emission Tomography (PET) we can assess the in-vivo regional amyloid load using several available ligands. To measure amyloid distributions in specific brain regions, a brain atlas is used. A popular method of creating a brain atlas is to segment a participant's structural Magnetic Resonance Imaging (MRI) scan. Acquiring an MRI is often challenging in intellectually-imparied populations because of contraindications or data exclusion due to significant motion artifacts or incomplete sequences related to general discomfort. When an MRI cannot be acquired, it is typically replaced with a standardized brain atlas derived from neurotypical populations (i.e. healthy individuals without DS) which may be inappropriate for use in DS. In this project, we create a series of disease and diagnosis-specific (cognitively stable (CS-DS), mild cognitive impairment (MCI-DS), and dementia (DEM-DS)) probabilistic group atlases of participants with DS and evaluate their accuracy of quantifying regional amyloid load compared to the individually-based MRI segmentations. Further, we compare the diagnostic-specific atlases with a probabilistic atlas constructed from similar-aged cognitively-stable neurotypical participants. We hypothesized that regional PET signals will best match the individually-based MRI segmentations by using DS group atlases that aligns with a participant's disorder and disease status (e.g. DS and MCI-DS). Our results vary by brain region but generally show that using a disorder-specific atlas in DS better matches the individually-based MRI segmentations than using an atlas constructed from cognitively-stable neurotypical participants. We found no additional benefit of using diagnose-specific atlases matching disease status. All atlases are made publicly available for the research community.

HIGHLIGHT

Down syndrome (DS) joint-label-fusion atlases provide accurate positron emission tomography (PET) amyloid measurements.A disorder-specific DS atlas is better than a neurotypical atlas for PET quantification.It is not necessary to use a disease-state-specific atlas for quantification in aged DS.Dorsal striatum results vary, possibly due to this region and dementia progression.

摘要

未标注

研究表明唐氏综合征(DS)中的阿尔茨海默病与淀粉样斑块的过度产生之间存在联系。使用正电子发射断层扫描(PET),我们可以使用几种可用的配体评估体内区域淀粉样蛋白负荷。为了测量特定脑区的淀粉样蛋白分布,会使用脑图谱。创建脑图谱的一种常用方法是分割参与者的结构磁共振成像(MRI)扫描。由于禁忌症或因严重运动伪影或与一般不适相关的不完整序列导致的数据排除,在智力受损人群中获取MRI通常具有挑战性。当无法获取MRI时,通常会用源自神经典型人群(即没有DS的健康个体)的标准化脑图谱来代替,而这可能不适用于DS。在本项目中,我们创建了一系列针对患有DS的参与者的疾病和诊断特异性(认知稳定(CS-DS)、轻度认知障碍(MCI-DS)和痴呆(DEM-DS))概率性群体图谱,并评估它们与基于个体的MRI分割相比量化区域淀粉样蛋白负荷的准确性。此外,我们将诊断特异性图谱与由年龄相仿的认知稳定神经典型参与者构建的概率性图谱进行比较。我们假设通过使用与参与者的疾病和疾病状态(如DS和MCI-DS)相匹配的DS群体图谱,区域PET信号将与基于个体的MRI分割最佳匹配。我们的结果因脑区而异,但总体表明,在DS中使用疾病特异性图谱比使用由认知稳定神经典型参与者构建的图谱更能与基于个体的MRI分割相匹配。我们发现使用与疾病状态匹配的诊断特异性图谱没有额外益处。所有图谱都已公开提供给研究界。

重点

唐氏综合征(DS)联合标签融合图谱提供准确的正电子发射断层扫描(PET)淀粉样蛋白测量。对于PET量化,疾病特异性DS图谱优于神经典型图谱。在老年DS中进行量化时,没有必要使用疾病状态特异性图谱。背侧纹状体的结果有所不同,可能是由于该区域和痴呆进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aca/9131930/f2ee518297c7/DAD2-14-e12324-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验