UMR Evolution, Génomes, Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, 91272, Gif-sur-Yvette, France.
UMR Génétique Quantitative et Evolution, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 91272, Gif-sur-Yvette, France.
Chromosome Res. 2022 Sep;30(2-3):141-150. doi: 10.1007/s10577-022-09698-1. Epub 2022 May 30.
Sex-ratio (SR) meiotic drivers are X-linked selfish genetic elements that promote their own transmission by preventing the production of Y-bearing sperm, which usually lowers male fertility. The spread of SR drivers in populations is expected to trigger the evolution of unlinked drive suppressors, a theoretically predicted co-evolution that has been observed in nature. Once completely suppressed, the drivers are expected either to decline if they still affect the fitness of their carriers, or to evolve randomly and possibly get fixed if the suppressors eliminate their deleterious effects. To explore this issue, we used the Paris sex-ratio system of Drosophila simulans in which drive results from the joint effect of two elements on the X chromosome: a segmental duplication and a deficient allele of the HP1D2 gene. We set up six experimental populations starting with 2/3 of X chromosomes carrying both elements (X) in a fully suppressing background. We let them evolve independently during almost a hundred generations under strong sexual competition, a condition known to cause the rapid disappearance of unsuppressed Paris X in previous experimental populations. In our study, the fate of X chromosomes varied among populations, from extinction to their maintenance at a frequency close to the starting one. While the reasons for these variable outcomes are still to be explored, our results show that complete suppression can prevent the demise of an otherwise deleterious X chromosome, turning a genetic conflict into cooperation between unlinked loci. Observations in natural populations suggest a contrasting fate of the two elements: disappearance of the duplication and maintenance of deficient HP1D2 alleles.
性比(SR)减数分裂驱动因子是 X 连锁的自私遗传因子,通过阻止产生携带 Y 染色体的精子来促进自身的传播,这通常会降低雄性的生育能力。SR 驱动因子在种群中的传播预计会引发不相关驱动抑制因子的进化,这是一种理论上预测的共同进化,在自然界中已经观察到。一旦被完全抑制,驱动因子如果仍然影响其携带者的适应性,预计要么会减少,要么如果抑制因子消除了它们的有害影响,就会随机进化并可能固定下来。为了探索这个问题,我们使用了果蝇 simulans 的巴黎性比系统,其中驱动是由两个位于 X 染色体上的元素的共同作用引起的:一个片段重复和 HP1D2 基因的一个缺陷等位基因。我们在一个完全抑制的背景下,从 2/3 的 X 染色体携带这两个元素(X)开始建立了六个实验种群。我们让它们在强烈的性竞争下独立进化了近一百代,这种条件已知会导致以前的实验种群中未被抑制的巴黎 X 迅速消失。在我们的研究中,X 染色体的命运在种群之间有所不同,从灭绝到接近起始频率的维持。虽然这些不同结果的原因仍有待探讨,但我们的结果表明,完全抑制可以防止有害的 X 染色体灭绝,将遗传冲突转化为不相关基因座之间的合作。对自然种群的观察表明,这两个元素的命运截然不同:重复的消失和 HP1D2 等位基因的维持。