Suppr超能文献

利用直接三维患者解剖匹配实现宫颈癌放射治疗的自动治疗计划。

Automatic treatment planning for cervical cancer radiation therapy using direct three-dimensional patient anatomy match.

机构信息

Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China.

Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

J Appl Clin Med Phys. 2022 Aug;23(8):e13649. doi: 10.1002/acm2.13649. Epub 2022 May 30.

Abstract

PURPOSE

Current knowledge-based planning methods for radiation therapy mainly use low-dimensional features extracted from contoured structures to identify geometrically similar patients. Here, we propose a knowledge-based treatment planning method where the anatomical similarity is quantified by the rigid registration of the three-dimensional (3D) planning target volume (PTV) and organs at risks (OARs) between an incoming patient and database patients.

METHODS

A database that contains PTV and OARs contours from 81 cervical cancer radiation therapy patients was established. To identify the anatomically similar patients, the PTV of the new patient was registered to each PTV in the database and the Dice similarity coefficients were calculated for the PTV, rectum, and bladder between the new patient and database patients. Then the top 20 patients in the PTV match and top 3 patients in the subsequent bladder or rectum match were selected. The best dose-volume histogram parameters from the top three patients were applied as the dose constraints to the automatic plan optimization. A fast Fourier transform algorithm was developed to accelerate the 3D PTV registration process run through the database. The entire treatment planning process was automated using in-house customized Pinnacle scripts. The automatic plans were generated for 20 patients using leave-one-out scheme and were evaluated against the corresponding clinical plans.

RESULTS

The automatic plans significantly reduced rectum and bladder by 11.79% ± 5.2% (p < 0.01) and 2.85% ± 3.16% (p < 0.01), respectively. The dose parameters achieved for the PTV and other OARs were comparable to those in the clinical plans. The entire planning process, including both dose prediction and inverse optimization, costs about 6 min.

CONCLUSIONS

The direct 3D contour match method utilizes the full spatial information of the PTV and OARs of interest and provides an intuitive measurement for patient plan anatomy similarity. The proposed automatic planning method can generate plans with better quality and higher efficiency.

摘要

目的

目前基于知识的放射治疗计划方法主要使用从轮廓结构中提取的低维特征来识别几何相似的患者。在这里,我们提出了一种基于知识的治疗计划方法,其中通过对新患者和数据库患者之间的三维(3D)计划靶区(PTV)和危及器官(OAR)的刚性配准来量化解剖相似性。

方法

建立了一个包含 81 例宫颈癌放射治疗患者的 PTV 和 OAR 轮廓的数据库。为了识别解剖相似的患者,将新患者的 PTV 配准到数据库中的每个 PTV,并计算新患者与数据库患者之间的 PTV、直肠和膀胱的 Dice 相似系数。然后选择 PTV 匹配排名前 20 的患者和随后的膀胱或直肠匹配排名前 3 的患者。从前三名患者中选择最佳剂量-体积直方图参数作为自动计划优化的剂量约束。开发了一种快速傅里叶变换算法来加速通过数据库的 3D PTV 配准过程。使用内部定制的 Pinnacle 脚本自动执行整个治疗计划过程。使用留一法为 20 名患者生成自动计划,并与相应的临床计划进行评估。

结果

自动计划显著降低了直肠和膀胱的剂量,分别降低了 11.79%±5.2%(p<0.01)和 2.85%±3.16%(p<0.01)。PTV 和其他 OAR 的剂量参数与临床计划相当。包括剂量预测和逆优化在内的整个规划过程大约需要 6 分钟。

结论

直接的 3D 轮廓匹配方法利用了 PTV 和 OAR 的全部空间信息,并为患者计划解剖相似性提供了直观的测量。所提出的自动规划方法可以生成质量更高、效率更高的计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验