Suppr超能文献

基于深度学习的胰腺立体定向体部放射治疗同步整合加量的注量图预测

Deep Learning-Based Fluence Map Prediction for Pancreas Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost.

作者信息

Wang Wentao, Sheng Yang, Palta Manisha, Czito Brian, Willett Christopher, Hito Martin, Yin Fang-Fang, Wu Qiuwen, Ge Yaorong, Wu Q Jackie

机构信息

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.

Medical Physics Graduate Program, Duke University, Durham, North Carolina.

出版信息

Adv Radiat Oncol. 2021 Feb 16;6(4):100672. doi: 10.1016/j.adro.2021.100672. eCollection 2021 Jul-Aug.

Abstract

PURPOSE

Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a challenging task, especially with simultaneous integrated boost treatment approaches. We propose a deep learning (DL) framework to accurately predict fluence maps from patient anatomy and directly generate intensity modulated radiation therapy plans.

METHODS AND MATERIALS

The framework employs 2 convolutional neural networks (CNNs) to sequentially generate beam dose prediction and fluence map prediction, creating a deliverable 9-beam intensity modulated radiation therapy plan. Within the beam dose prediction CNN, axial slices of combined structure contour masks are used to predict 3-dimensional (3D) beam doses for each beam. Each 3D beam dose is projected along its beam's-eye-view to form a 2D beam dose map, which is subsequently used by the fluence map prediction CNN to predict its fluence map. Finally, the 9 predicted fluence maps are imported into the treatment planning system to finalize the plan by leaf sequencing and dose calculation. One hundred patients receiving pancreas SBRT were retrospectively collected for this study. Benchmark plans with unified simultaneous integrated boost prescription (25/33 Gy) were manually optimized for each case. The data set was split into 80/20 cases for training and testing. We evaluated the proposed DL framework by assessing both the fluence maps and the final predicted plans. Further, clinical acceptability of the plans was evaluated by a physician specializing in gastrointestinal cancer.

RESULTS

The DL-based planning was, on average, completed in under 2 minutes. In testing, the predicted plans achieved similar dose distribution compared with the benchmark plans (-1.5% deviation for planning target volume 33 V), with slightly higher planning target volume maximum (+1.03 Gy) and organ at risk maximum (+0.95 Gy) doses. After renormalization, the physician rated 19 cases clinically acceptable and 1 case requiring minor improvement.

CONCLUSIONS

The DL framework can effectively plan pancreas SBRT cases within 2 minutes. The predicted plans are clinically deliverable, with plan quality approaching that of manual planning.

摘要

目的

胰腺立体定向体部放射治疗(SBRT)的治疗计划是一项具有挑战性的任务,尤其是在同步整合推量治疗方法时。我们提出了一种深度学习(DL)框架,以根据患者解剖结构准确预测注量图,并直接生成调强放射治疗计划。

方法和材料

该框架采用2个卷积神经网络(CNN)依次生成射束剂量预测和注量图预测,从而创建一个可交付的9野调强放射治疗计划。在射束剂量预测CNN中,使用组合结构轮廓掩码的轴向切片来预测每个射束的三维(3D)射束剂量。每个3D射束剂量沿其射束视向投影以形成2D射束剂量图,随后注量图预测CNN使用该图来预测其注量图。最后,将9个预测的注量图导入治疗计划系统,通过叶片排序和剂量计算来完成计划。本研究回顾性收集了100例接受胰腺SBRT的患者。针对每个病例手动优化了具有统一同步整合推量处方(25/33 Gy)的基准计划。数据集按80/20的比例分为训练集和测试集。我们通过评估注量图和最终预测计划来评估所提出的DL框架。此外,由一位专门从事胃肠道癌治疗的医生评估计划的临床可接受性。

结果

基于DL的计划平均在2分钟内完成。在测试中,与基准计划相比,预测计划实现了相似的剂量分布(计划靶体积33 V的偏差为-1.5%),计划靶体积最大剂量(+1.03 Gy)和危及器官最大剂量(+0.95 Gy)略高。重新归一化后,医生将19例评为临床可接受,1例需要轻微改进。

结论

DL框架可以在2分钟内有效地规划胰腺SBRT病例。预测计划在临床上是可交付的,计划质量接近手动规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a95/8099762/3b7f0a76fb96/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验