School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, China.
School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, China.
Comput Biol Med. 2022 Aug;147:105651. doi: 10.1016/j.compbiomed.2022.105651. Epub 2022 May 20.
Retinal vessels play an important role in judging many eye-related diseases, so accurate segmentation of retinal vessels has become the key to auxiliary diagnosis. In this paper, we present a Cascaded Residual Attention U-Net (CRAUNet) that can be regarded as a set of U-Nets, that allows coarse-to-fine representations. In the CRAUNet, we introduce a DropBlock regularization similar to the frequently-used dropout, which greatly reduces the overfitting problem. In addition, we propose a multi-scale fusion channel attention (MFCA) module to explore helpful information, and then merge this information instead of using a direct skip-connection. Finally, to prove the effectiveness of our method, we conduct extensive experiments on DRIVE and CHASE_DB1 datasets. The proposed CRAUNet achieves area under the receiver operating characteristic curve (AUC) of 0.9830 and 0.9865, respectively, for the two datasets. Compared to other state-of-the-art methods, the experimental results demonstrate that the performance of the proposed method is superior to that of others.
视网膜血管在判断许多眼部相关疾病方面起着重要作用,因此准确分割视网膜血管已成为辅助诊断的关键。在本文中,我们提出了级联残差注意 U-Net(CRAUNet),可以将其视为一组 U-Nets,实现从粗到精的表示。在 CRAUNet 中,我们引入了类似于常用的 dropout 的 DropBlock 正则化,这大大减少了过拟合问题。此外,我们提出了一种多尺度融合通道注意力(MFCA)模块来探索有用的信息,然后合并这些信息,而不是使用直接的跳过连接。最后,为了证明我们方法的有效性,我们在 DRIVE 和 CHASE_DB1 数据集上进行了广泛的实验。所提出的 CRAUNet 在这两个数据集上的接收器工作特征曲线下面积(AUC)分别达到 0.9830 和 0.9865。与其他最先进的方法相比,实验结果表明,所提出方法的性能优于其他方法。