Xu Yan, Quan Rixiang, Xu Weiting, Huang Yi, Chen Xiaolong, Liu Fengyuan
School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK.
Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.
Bioengineering (Basel). 2024 Oct 16;11(10):1034. doi: 10.3390/bioengineering11101034.
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
医学图像分割在准确诊断和治疗规划中起着关键作用,能够在广泛的临床任务中进行精确分析。本综述首先全面概述了传统分割技术,包括阈值分割、基于边缘的方法、基于区域的方法、聚类和基于图的分割。虽然这些方法计算效率高且可解释,但在应用于复杂、有噪声或多变的医学图像时,它们往往面临重大挑战。本综述的核心重点是深度学习对医学图像分割的变革性影响。我们深入研究了突出的深度学习架构,如卷积神经网络(CNN)、全卷积网络(FCN)、U-Net、循环神经网络(RNN)、对抗网络(GAN)和自动编码器(AE)。对每种架构都从其结构基础和在医学图像分割中的具体应用方面进行了分析,说明了这些模型如何在各种临床环境中提高了分割精度。最后,本综述探讨了深度学习与传统分割方法的结合,解决了两种方法的局限性。这些混合策略提供了改进的分割性能,特别是在涉及弱边缘、噪声或强度不一致的具有挑战性的场景中。通过综合近期的进展,本综述为研究人员和从业者提供了详细的资源,对医学图像分割的当前状况和未来方向提供了有价值的见解。
Bioengineering (Basel). 2024-10-16
J Med Imaging (Bellingham). 2024-1
J Appl Clin Med Phys. 2024-12
Cancers (Basel). 2019-8-23
Biomed Eng Online. 2024-8-31
Int J Multimed Inf Retr. 2022
Front Public Health. 2023
Diagnostics (Basel). 2022-11-11
Phys Eng Sci Med. 2025-9-3
J Clin Med. 2025-7-30
Bioengineering (Basel). 2025-5-29
Skeletal Radiol. 2025-5-23
Bioengineering (Basel). 2023-2-6
Comput Biol Med. 2023-1
J Imaging. 2022-9-27
Bioengineering (Basel). 2022-9-15
IEEE J Biomed Health Inform. 2022-9
Comput Biol Med. 2022-8
Sci Rep. 2022-5-23