文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医学图像分割进展:传统、深度学习及混合方法综合综述

Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches.

作者信息

Xu Yan, Quan Rixiang, Xu Weiting, Huang Yi, Chen Xiaolong, Liu Fengyuan

机构信息

School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK.

Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.

出版信息

Bioengineering (Basel). 2024 Oct 16;11(10):1034. doi: 10.3390/bioengineering11101034.


DOI:10.3390/bioengineering11101034
PMID:39451409
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11505408/
Abstract

Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.

摘要

医学图像分割在准确诊断和治疗规划中起着关键作用,能够在广泛的临床任务中进行精确分析。本综述首先全面概述了传统分割技术,包括阈值分割、基于边缘的方法、基于区域的方法、聚类和基于图的分割。虽然这些方法计算效率高且可解释,但在应用于复杂、有噪声或多变的医学图像时,它们往往面临重大挑战。本综述的核心重点是深度学习对医学图像分割的变革性影响。我们深入研究了突出的深度学习架构,如卷积神经网络(CNN)、全卷积网络(FCN)、U-Net、循环神经网络(RNN)、对抗网络(GAN)和自动编码器(AE)。对每种架构都从其结构基础和在医学图像分割中的具体应用方面进行了分析,说明了这些模型如何在各种临床环境中提高了分割精度。最后,本综述探讨了深度学习与传统分割方法的结合,解决了两种方法的局限性。这些混合策略提供了改进的分割性能,特别是在涉及弱边缘、噪声或强度不一致的具有挑战性的场景中。通过综合近期的进展,本综述为研究人员和从业者提供了详细的资源,对医学图像分割的当前状况和未来方向提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/53e834334318/bioengineering-11-01034-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/013d77369d27/bioengineering-11-01034-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/639d989654eb/bioengineering-11-01034-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/f4c21c62b614/bioengineering-11-01034-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/6a85050cb642/bioengineering-11-01034-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/dc21c4c3f029/bioengineering-11-01034-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/59a85411adab/bioengineering-11-01034-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/38cbfe72c2b5/bioengineering-11-01034-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/5aea264a8b1a/bioengineering-11-01034-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/53e834334318/bioengineering-11-01034-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/013d77369d27/bioengineering-11-01034-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/639d989654eb/bioengineering-11-01034-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/f4c21c62b614/bioengineering-11-01034-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/6a85050cb642/bioengineering-11-01034-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/dc21c4c3f029/bioengineering-11-01034-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/59a85411adab/bioengineering-11-01034-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/38cbfe72c2b5/bioengineering-11-01034-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/5aea264a8b1a/bioengineering-11-01034-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e9/11505408/53e834334318/bioengineering-11-01034-g009.jpg

相似文献

[1]
Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches.

Bioengineering (Basel). 2024-10-16

[2]
PS5-Net: a medical image segmentation network with multiscale resolution.

J Med Imaging (Bellingham). 2024-1

[3]
Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications.

Med Phys. 2020-6

[4]
A review of deep learning approaches for multimodal image segmentation of liver cancer.

J Appl Clin Med Phys. 2024-12

[5]
Cancer Diagnosis Using Deep Learning: A Bibliographic Review.

Cancers (Basel). 2019-8-23

[6]
Deep learning for the harmonization of structural MRI scans: a survey.

Biomed Eng Online. 2024-8-31

[7]
Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey.

Int J Multimed Inf Retr. 2022

[8]
Medical image analysis using deep learning algorithms.

Front Public Health. 2023

[9]
Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations.

J Xray Sci Technol. 2024

[10]
Fully Convolutional Network for the Semantic Segmentation of Medical Images: A Survey.

Diagnostics (Basel). 2022-11-11

引用本文的文献

[1]
A review of image processing and analysis of computed tomography images using deep learning methods.

Phys Eng Sci Med. 2025-9-3

[2]
Gastrointestinal tract disease classification from wireless capsule endoscopy images based on deep learning information fusion and Newton Raphson controlled marine predator algorithm.

Sci Rep. 2025-9-1

[3]
Deep Learning Techniques for Prostate Cancer Analysis and Detection: Survey of the State of the Art.

J Imaging. 2025-7-28

[4]
Technological Advances in Pre-Operative Planning.

J Clin Med. 2025-7-30

[5]
AI-assisted anatomical structure recognition and segmentation via mamba-transformer architecture in abdominal ultrasound images.

Front Artif Intell. 2025-7-23

[6]
Using the Deep Learning Algorithm to Determine the Presence of Sacroiliitis from Pelvic Radiographs.

Life (Basel). 2025-5-29

[7]
Automated Risser Grade Assessment of Pelvic Bones Using Deep Learning.

Bioengineering (Basel). 2025-5-29

[8]
A new dataset for measuring the performance of blood vessel segmentation methods under distribution shifts.

PLoS One. 2025-5-27

[9]
AI-Driven Automated Blood Cell Anomaly Detection: Enhancing Diagnostics and Telehealth in Hematology.

J Imaging. 2025-5-16

[10]
Optimizing the power of AI for fracture detection: from blind spots to breakthroughs.

Skeletal Radiol. 2025-5-23

本文引用的文献

[1]
A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+.

BMC Cancer. 2023-11-3

[2]
Fully Automatic Liver and Tumor Segmentation from CT Image Using an AIM-Unet.

Bioengineering (Basel). 2023-2-6

[3]
Novel Light Convolutional Neural Network for COVID Detection with Watershed Based Region Growing Segmentation.

J Imaging. 2023-2-13

[4]
A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans.

Comput Biol Med. 2023-1

[5]
Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images.

Comput Biol Med. 2023-1

[6]
GUBS: Graph-Based Unsupervised Brain Segmentation in MRI Images.

J Imaging. 2022-9-27

[7]
NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM.

Bioengineering (Basel). 2022-9-15

[8]
Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation.

IEEE J Biomed Health Inform. 2022-9

[9]
CRAUNet: A cascaded residual attention U-Net for retinal vessel segmentation.

Comput Biol Med. 2022-8

[10]
Automatic lung segmentation in chest X-ray images using improved U-Net.

Sci Rep. 2022-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索