Suppr超能文献

由分子衍生种子引发的石墨烯纳米带。

Graphene nanoribbons initiated from molecularly derived seeds.

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Argonne National Laboratory, Center for Nanoscale Materials, Argonne, IL, 60439, USA.

出版信息

Nat Commun. 2022 May 30;13(1):2992. doi: 10.1038/s41467-022-30563-6.

Abstract

Semiconducting graphene nanoribbons are promising materials for nanoelectronics but are held back by synthesis challenges. Here we report that molecular-scale carbon seeds can be exploited to initiate the chemical vapor deposition (CVD) synthesis of graphene to generate one-dimensional graphene nanoribbons narrower than 5 nm when coupled with growth phenomena that selectively extend seeds along a single direction. This concept is demonstrated by subliming graphene-like polycyclic aromatic hydrocarbon molecules onto a Ge(001) catalyst surface and then anisotropically evolving size-controlled nanoribbons from the seeds along [Formula: see text] of Ge(001) via CH CVD. Armchair nanoribbons with mean normalized standard deviation as small as 11% (3 times smaller than nanoribbons nucleated without seeds), aspect ratio as large as 30, and width as narrow as 2.6 nm (tunable via CH exposure time) are realized. Two populations of nanoribbons are compared in field-effect transistors (FETs), with off-current differing by 150 times because of the nanoribbons' different widths.

摘要

半导体石墨烯纳米带是纳米电子学中很有前途的材料,但由于合成方面的挑战而受到限制。在这里,我们报告说,可以利用分子级别的碳种子来引发化学气相沉积(CVD)合成石墨烯,从而在与选择性地沿着单个方向扩展种子的生长现象结合时,生成宽度小于 5nm 的一维石墨烯纳米带。这一概念通过将类石墨烯的多环芳烃分子升华到 Ge(001)催化剂表面,并通过 CH CVD 沿着 Ge(001)的 [Formula: see text] 方向从种子中各向异性地演化出尺寸可控的纳米带来证明。通过 CH 暴露时间可调节)实现了平均归一化标准偏差小至 11%(比没有种子的纳米带小 3 倍)、纵横比高达 30 且宽度窄至 2.6nm 的扶手椅型纳米带。在场效应晶体管(FET)中比较了两种纳米带,由于纳米带的不同宽度,关电流相差 150 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc00/9151757/0efe6991e571/41467_2022_30563_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验