Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
Department of Mathematics, Government College of Engineering and Textile Technology, Berhampore, 742101, India.
Sci Rep. 2022 May 30;12(1):8998. doi: 10.1038/s41598-022-12719-y.
Cell proliferation often experiences a density-dependent intrinsic proliferation rate (IPR) and negative feedback from growth-inhibiting molecules in culture media. The lack of flexible models with explanatory parameters fails to capture such a proliferation mechanism. We propose an extended logistic growth law with the density-dependent IPR and additional negative feedback. The extended parameters of the proposed model can be interpreted as density-dependent cell-cell cooperation and negative feedback on cell proliferation. Moreover, we incorporate further density regulation for flexibility in the model through environmental resistance on cells. The proposed growth law has similarities with the strong Allee model and harvesting phenomenon. We also develop the stochastic analog of the deterministic model by representing possible heterogeneity in growth-inhibiting molecules and environmental perturbation of the culture setup as correlated multiplicative and additive noises. The model provides a conditional maximum sustainable stable cell density (MSSCD) and a new fitness measure for proliferative cells. The proposed model shows superiority to the logistic law after fitting to real cell culture datasets. We illustrate both conditional MSSCD and the new cell fitness for a range of parameters. The cell density distributions reveal the chance of overproliferation, underproliferation, or decay for different parameter sets under the deterministic and stochastic setups.
细胞增殖通常经历与细胞密度相关的固有增殖率 (IPR) 和来自培养基中生长抑制分子的负反馈。缺乏具有解释参数的灵活模型,无法捕捉到这种增殖机制。我们提出了一个扩展的逻辑斯谛增长定律,其中包括与细胞密度相关的 IPR 和额外的负反馈。所提出模型的扩展参数可以解释为细胞间密度依赖性的合作和对细胞增殖的负反馈。此外,我们通过对细胞的环境阻力,在模型中纳入了进一步的密度调节,以提高模型的灵活性。所提出的生长规律与强阿利效应模型和收获现象具有相似性。我们还通过将生长抑制分子的可能异质性和培养设置的环境干扰表示为相关的乘性和加性噪声,来开发确定性模型的随机模拟。该模型为增殖细胞提供了一个有条件的最大可持续稳定细胞密度 (MSSCD) 和新的适应度衡量标准。在对真实细胞培养数据集进行拟合后,所提出的模型显示出比逻辑斯谛定律的优越性。我们展示了一系列参数下,有条件的 MSSCD 和新的细胞适应度。细胞密度分布揭示了在确定性和随机性设置下,不同参数集下的过度增殖、增殖不足或衰减的机会。