Heydari Jonathan, Lawless Conor, Lydall David A, Wilkinson Darren J
Newcastle University, UK.
Newcastle University, UK.
Biosystems. 2014 Aug;122:55-72. doi: 10.1016/j.biosystems.2014.05.002. Epub 2014 Jun 4.
The transition density of a stochastic, logistic population growth model with multiplicative intrinsic noise is analytically intractable. Inferring model parameter values by fitting such stochastic differential equation (SDE) models to data therefore requires relatively slow numerical simulation. Where such simulation is prohibitively slow, an alternative is to use model approximations which do have an analytically tractable transition density, enabling fast inference. We introduce two such approximations, with either multiplicative or additive intrinsic noise, each derived from the linear noise approximation (LNA) of a logistic growth SDE. After Bayesian inference we find that our fast LNA models, using Kalman filter recursion for computation of marginal likelihoods, give similar posterior distributions to slow, arbitrarily exact models. We also demonstrate that simulations from our LNA models better describe the characteristics of the stochastic logistic growth models than a related approach. Finally, we demonstrate that our LNA model with additive intrinsic noise and measurement error best describes an example set of longitudinal observations of microbial population size taken from a typical, genome-wide screening experiment.
具有乘性内在噪声的随机逻辑斯谛种群增长模型的转移密度在解析上难以处理。因此,通过将此类随机微分方程(SDE)模型拟合到数据来推断模型参数值需要相对较慢的数值模拟。在这种模拟速度过慢的情况下,一种替代方法是使用具有解析上易于处理的转移密度的模型近似,从而实现快速推断。我们引入了两种这样的近似,一种具有乘性内在噪声,另一种具有加性内在噪声,它们均源自逻辑斯谛增长SDE的线性噪声近似(LNA)。经过贝叶斯推断后,我们发现我们的快速LNA模型使用卡尔曼滤波器递归计算边际似然,与缓慢的、任意精确的模型给出相似的后验分布。我们还证明,与相关方法相比,我们的LNA模型的模拟能更好地描述随机逻辑斯谛增长模型的特征。最后,我们证明,具有加性内在噪声和测量误差的LNA模型能最好地描述一组来自典型全基因组筛选实验的微生物种群大小纵向观测的示例数据。