Vanderstraeten Julie, da Fonseca Maria João Maurício, De Groote Philippe, Grimon Dennis, Gerstmans Hans, Kahn Amaranta, Moraïs Sarah, Bayer Edward A, Briers Yves
Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
Laboratory for Biomolecular Discovery and Engineering, Department of Biology, VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001, Louvain, Belgium.
Biotechnol Biofuels Bioprod. 2022 May 30;15(1):60. doi: 10.1186/s13068-022-02158-2.
Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome.
VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers.
We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.
定制纤维素体是可用于改善木质纤维素生物质降解的自组装嵌合酶复合物。它们由一种称为脚手架蛋白的合成多模块骨架蛋白和一系列降解多糖的不同嵌合对接酶组成。多年来,已经构建了几种功能性定制纤维素体。由于许多参数会影响这些多酶复合物的效率,因此需要通过测试对接酶和脚手架蛋白变体的组合排列来优化定制纤维素体的结构。然而,模块化克隆程序繁琐且麻烦。
VersaTile是一种组合DNA组装方法,可快速构建并因此比较一系列模块化蛋白质。在此,我们展示了VersaTile平台的扩展,以促进定制纤维素体的构建。我们构建了一个片段库,由dockerin、黏连蛋白、接头、标签和酶活性模块组成。开发的工具箱使我们能够以前所未有的速度高效创建和优化定制纤维素体。作为概念验证,构建并优化了一种能够降解特定半纤维素底物——半乳甘露聚糖的三价定制纤维素体。发现影响纤维素体效率的主要因素是所选的dockerin和接头以及脚手架蛋白上的对接酶比例。优化后的定制纤维素体能够水解半乳甘露聚糖多糖并释放甘露糖和半乳糖单体。
我们消除了定制纤维素体领域的一个主要技术障碍,并预期VersaTile平台将成为开发更精细多酶复合物的起点。