Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Clin Orthop Relat Res. 2022 Oct 1;480(10):2043-2055. doi: 10.1097/CORR.0000000000002257. Epub 2022 May 30.
Bone grafting is widely used to treat large bone defects. A porous composite of a bioactive octacalcium phosphate material with gelatin sponge (OCP/Gel) has been shown to biodegrade promptly and be replaced with new bone both in animal models of a membranous bone defect and a long bone defect. However, it is unclear whether OCP/Gel can regenerate bone in more severe bone defects, such as a critical-size transcortical defect.
QUESTIONS/PURPOSES: Using an in vivo rat femur model of a standardized, transcortical, critical-size bone defect, we asked: Compared with a Gel control, does OCP/Gel result in more newly formed bone as determined by (1) micro-CT evaluation, (2) histologic and histomorphometric measures, and (3) osteocalcin staining and tartrate-resistant acid phosphatase staining?
Thirty-four 12-week-old male Sprague-Dawley rats (weight 356 ± 25.6 g) were used. Gel and OCP/Gel composites were prepared in our laboratory. Porous cylinders 3 mm in diameter and 4 mm in height were manufactured from both materials. The OCP/Gel and Gel cylinders were implanted into a 3-mm-diameter transcortical critical-size bone defect model in the left rat femur. The OCP/Gel and Gel were randomly assigned, and the cylinders were implanted. The biological responses of the defect regions were evaluated radiologically and histologically. At 4 and 8 weeks after implantation, CT evaluation, histological examination of decalcified samples, and immunostaining were quantitatively performed to evaluate new bone formation and remaining bone graft substitutes and activity of osteoblasts and osteoclast-like cells (n = 24). Qualitative histological evaluation was performed on undecalcified samples at 3 weeks postimplantation (n = 10). CT and decalcified tissue analysis was not performed blinded, but an analysis of undecalcified specimens was performed under blinded conditions.
Radiologic analysis revealed that the OCP/Gel group showed radiopaque regions around the OCP granules and at the edge of the defect margin 4 weeks after implantation, suggesting that new bone formation occurred in two ways. In contrast, the rat femurs in the Gel group had a limited radiopaque zone at the edge of the defect region. The amount of new bone volume analyzed by micro-CT was higher in the OCP/Gel group than in the Gel group at 4 and 8 weeks after implantation (4 weeks after implantation: OCP/Gel versus Gel: 6.1 ± 1.6 mm 3 versus 3.4 ± 0.7 mm 3 , mean difference 2.7 [95% confidence interval (CI) 0.9 to 4.5]; p = 0.002; intraclass correlation coefficient [ICC] 0.72 [95% CI 0.29 to 0.91]; 8 weeks after implantation: OCP/Gel versus Gel: 3.9 ± 0.7 mm 3 versus 1.4 ± 1.1 mm 3 , mean difference 2.5 [95% CI 0.8 to 4.3]; p = 0.004; ICC 0.81 [95% CI 0.47 to 0.94]). Histologic evaluation also showed there was a higher percentage of new bone formation in the OCP/Gel group at 4 and 8 weeks after implantation (4 weeks after implantation: OCP/Gel versus Gel: 31.2% ± 5.3% versus 13.6% ± 4.0%, mean difference 17.6% [95% CI 14.2% to 29.2%]; p < 0.001; ICC 0.83 [95% CI 0.53 to 0.95]; 8 weeks after implantation: OCP/Gel versus Gel: 28.3% ± 6.2% versus 9.5% ± 1.9%, mean difference 18.8% [95% CI 11.3% to 26.3%]; p < 0.001; ICC 0.90 [95% CI 0.69 to 0.97]). Bridging of the defect area started earlier in the OCP/Gel group than in the Gel group at 4 weeks after implantation. Osteocalcin immunostaining showed that the number of mature osteoblasts was higher in the OCP/Gel group than in the Gel group at 4 weeks (OCP/Gel versus Gel: 42.1 ± 6.5/mm 2 versus 17.4 ± 5.4/mm 2 , mean difference 24.7 [95% CI 16.2 to 33.2]; p < 0.001; ICC 0.99 [95% CI 0.97 to 0.99]). At 4 weeks, the number of osteoclast-like cells was higher in the OCP/Gel composite group than in the Gel group (OCP/Gel versus Gel: 3.2 ± 0.6/mm 2 versus 0.9 ± 0.4/mm 2 , mean difference 2.3 [95% CI 1.3 to 3.5]; p < 0.001; ICC 0.79 [95% CI 0.35 to 0.94]).
OCP/Gel composites induced early bone remodeling and cortical bone repair in less time than did the Gel control in a rat critical-size, transcortical femoral defect, suggesting that OCP/Gel could be used as a bone replacement material to treat severe bone defects.
In a transcortical bone defect model of critical size in the rat femur, the OCP/Gel composite demonstrated successful bone regeneration. Several future studies are needed to evaluate the clinical application of this interesting bone graft substitute, including bone formation capacity in refractory fracture and spinal fusion models and the comparison of bone strength after repair with OCP/Gel composite to that of autologous bone.
骨移植广泛用于治疗大的骨缺损。一种具有生物活性的八钙磷灰石材料与明胶海绵的多孔复合材料(OCP/Gel)已被证明在膜状骨缺损和长骨缺损的动物模型中能够迅速生物降解,并被新骨取代。然而,目前尚不清楚 OCP/Gel 是否可以在更严重的骨缺损(如临界尺寸皮质骨缺损)中再生骨。
问题/目的:使用大鼠股骨标准跨皮质临界尺寸骨缺损模型,我们提出以下问题:与 Gel 对照组相比,OCP/Gel 是否会导致更多的新骨形成,具体表现为(1)微 CT 评估,(2)组织学和组织形态计量学测量,以及(3)骨钙素染色和抗酒石酸酸性磷酸酶染色?
34 只 12 周龄雄性 Sprague-Dawley 大鼠(体重 356±25.6g)用于研究。我们在实验室中制备了 Gel 和 OCP/Gel 复合材料。制造了直径 3 毫米、高 4 毫米的多孔圆柱体。OCP/Gel 和 Gel 圆柱体被植入大鼠左侧股骨 3mm 直径的跨皮质临界尺寸骨缺损模型中。OCP/Gel 和 Gel 被随机分配并植入。使用放射学和组织学方法评估缺损区域的生物学反应。在植入后 4 周和 8 周,进行 CT 评估、脱钙样本组织学检查和免疫染色,以评估新骨形成和剩余骨移植物替代品以及成骨细胞和破骨细胞样细胞的活性(n=24)。植入后 3 周进行未脱钙样本的定性组织学评价(n=10)。CT 和脱钙组织分析未进行盲法评估,但未脱钙标本的分析是在盲法条件下进行的。
放射学分析显示,OCP/Gel 组在植入后 4 周时在 OCP 颗粒周围和缺损边缘处显示出不透射线区域,表明发生了两种方式的新骨形成。相比之下,Gel 组大鼠股骨在缺损区域边缘处仅有有限的不透射线区域。植入后 4 周和 8 周时,OCP/Gel 组的新骨体积分析结果明显高于 Gel 组(植入后 4 周:OCP/Gel 组与 Gel 组分别为 6.1±1.6mm3 和 3.4±0.7mm3,平均差值 2.7[95%置信区间(CI)0.9 至 4.5];p=0.002;组内相关系数(ICC)0.72[95%CI 0.29 至 0.91];植入后 8 周:OCP/Gel 组与 Gel 组分别为 3.9±0.7mm3 和 1.4±1.1mm3,平均差值 2.5[95%CI 0.8 至 4.3];p=0.004;ICC 0.81[95%CI 0.47 至 0.94])。组织学评价也显示,在植入后 4 周和 8 周时,OCP/Gel 组的新骨形成比例更高(植入后 4 周:OCP/Gel 组与 Gel 组分别为 31.2%±5.3%和 13.6%±4.0%,平均差值 17.6%[95%CI 14.2%至 29.2%];p<0.001;ICC 0.83[95%CI 0.53 至 0.95];植入后 8 周:OCP/Gel 组与 Gel 组分别为 28.3%±6.2%和 9.5%±1.9%,平均差值 18.8%[95%CI 11.3%至 26.3%];p<0.001;ICC 0.90[95%CI 0.69 至 0.97])。在植入后 4 周时,OCP/Gel 组的缺损区域开始更早地桥接。骨钙素免疫染色显示,在植入后 4 周时,OCP/Gel 组的成熟成骨细胞数量高于 Gel 组(OCP/Gel 组与 Gel 组分别为 42.1±6.5/mm2和 17.4±5.4/mm2,平均差值 24.7[95%CI 16.2 至 33.2];p<0.001;ICC 0.99[95%CI 0.97 至 0.99])。在植入后 4 周时,OCP/Gel 复合体内破骨细胞样细胞的数量高于 Gel 组(OCP/Gel 组与 Gel 组分别为 3.2±0.6/mm2和 0.9±0.4/mm2,平均差值 2.3[95%CI 1.3 至 3.5];p<0.001;ICC 0.79[95%CI 0.35 至 0.94])。
与 Gel 对照组相比,OCP/Gel 复合材料在大鼠临界尺寸皮质骨缺损模型中诱导了早期骨重塑和皮质骨修复,这表明 OCP/Gel 可作为一种骨替代材料用于治疗严重的骨缺损。
在大鼠皮质骨缺损临界尺寸模型中,OCP/Gel 复合材料显示出成功的骨再生。还需要进行进一步的临床研究来评估这种有前途的骨移植物替代物的临床应用,包括在难治性骨折和脊柱融合模型中的骨形成能力,以及与 OCP/Gel 复合材料修复后的骨强度与自体骨的比较。