Suppr超能文献

Metapone:一个用于非靶向代谢组学数据联合通路测试的 Bioconductor 软件包。

Metapone: a Bioconductor package for joint pathway testing for untargeted metabolomics data.

机构信息

Shenzhen Research Institute of Big Data, Shenzhen 518712, China.

School of Data Science, The Chinese University of Hong Kong - Shenzhen, Shenzhen 518712, China.

出版信息

Bioinformatics. 2022 Jul 11;38(14):3662-3664. doi: 10.1093/bioinformatics/btac364.

Abstract

MOTIVATION

Testing for pathway enrichment is an important aspect in the analysis of untargeted metabolomics data. Due to the unique characteristics of untargeted metabolomics data, some key issues have not been fully addressed in existing pathway testing algorithms: (i) matching uncertainty between data features and metabolites; (ii) lacking of method to analyze positive mode and negative mode liquid chromatography-mass spectrometry (LC/MS) data simultaneously on the same set of subjects; (iii) the incompleteness of pathways in individual software packages.

RESULTS

We developed an innovative R/Bioconductor package: metabolic pathway testing with positive and negative mode data (metapone), which can perform two novel statistical tests that take matching uncertainty into consideration-(i) a weighted gene set enrichment analysis-type test and (ii) a permutation-based weighted hypergeometric test. The package is capable of combining positive- and negative-ion mode results in a single testing scheme. For comprehensiveness, the built-in pathways were manually curated from three sources: Kyoto Encyclopedia of Genes and Genomes, Mummichog and The Small Molecule Pathway Database.

AVAILABILITY AND IMPLEMENTATION

The package is available at https://bioconductor.org/packages/devel/bioc/html/metapone.html.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

通路富集测试是分析非靶向代谢组学数据的一个重要方面。由于非靶向代谢组学数据的独特特征,现有通路测试算法中仍存在一些未充分解决的关键问题:(i)数据特征与代谢物之间的匹配不确定性;(ii)缺乏同时分析同一组对象正离子模式和负离子模式液相色谱-质谱(LC/MS)数据的方法;(iii)单个软件包中通路的不完整。

结果

我们开发了一种创新的 R/Bioconductor 包:正负离子模式数据的代谢通路测试(metapone),它可以执行两种新的统计测试,考虑到匹配不确定性:(i)加权基因集富集分析型测试和(ii)基于置换的加权超几何测试。该软件包能够在单个测试方案中结合正离子和负离子模式的结果。为了全面性,内置通路是从三个来源手动整理的:京都基因与基因组百科全书、Mummichog 和小分子通路数据库。

可用性和实现

该软件包可在 https://bioconductor.org/packages/devel/bioc/html/metapone.html 获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

引用本文的文献

本文引用的文献

1
Pathway testing for longitudinal metabolomics.纵向代谢组学的途径检测。
Stat Med. 2021 Jun 15;40(13):3053-3065. doi: 10.1002/sim.8957. Epub 2021 Mar 26.
6
Metabolomics toward personalized medicine.代谢组学与个性化医疗
Mass Spectrom Rev. 2019 May;38(3):221-238. doi: 10.1002/mas.21548. Epub 2017 Oct 26.
7
Network Marker Selection for Untargeted LC-MS Metabolomics Data.非靶向液相色谱-质谱代谢组学数据的网络标记物选择
J Proteome Res. 2017 Mar 3;16(3):1261-1269. doi: 10.1021/acs.jproteome.6b00861. Epub 2017 Feb 17.
10
Predicting network activity from high throughput metabolomics.从高通量代谢组学预测网络活动。
PLoS Comput Biol. 2013;9(7):e1003123. doi: 10.1371/journal.pcbi.1003123. Epub 2013 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验