Suppr超能文献

多发性骨髓瘤分割网络(MMNet):一种基于编码器-解码器的深度多尺度特征融合模型,用于磁共振成像中的多发性骨髓瘤分割。

Multiple myeloma segmentation net (MMNet): an encoder-decoder-based deep multiscale feature fusion model for multiple myeloma segmentation in magnetic resonance imaging.

作者信息

Zhao Xin, Chen Lili, Zhang Nannan, Lv Yuchan, Hu Xue

机构信息

School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China.

The Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Quant Imaging Med Surg. 2024 Oct 1;14(10):7176-7199. doi: 10.21037/qims-24-683. Epub 2024 Sep 24.

Abstract

BACKGROUND

Patients with multiple myeloma (MM), a malignant disease involving bone marrow plasma cells, shows significant susceptibility to bone degradation, impairing normal hematopoietic function. The accurate and effective segmentation of MM lesion areas is crucial for the early detection and diagnosis of myeloma. However, the presence of complex shape variations, boundary ambiguities, and multiscale lesion areas, ranging from punctate lesions to extensive bone damage, presents a formidable challenge in achieving precise segmentation. This study thus aimed to develop a more accurate and robust segmentation method for MM lesions by extracting rich multiscale features.

METHODS

In this paper, we propose a novel, multiscale feature fusion encoding-decoding model architecture specifically designed for MM segmentation. In the encoding stage, our proposed multiscale feature extraction module, dilated dense connected net (DCNet), is employed to systematically extract multiscale features, thereby augmenting the model's sensing field. In the decoding stage, we propose the CBAM-atrous spatial pyramid pooling (CASPP) module to enhance the extraction of multiscale features, enabling the model to dynamically prioritize both channel and spatial information. Subsequently, these features are concatenated with the final output feature map to optimize segmentation outcomes. At the feature fusion bottleneck layer, we incorporate the dynamic feature fusion (DyCat) module into the skip connection to dynamically adjust feature extraction parameters and fusion processes.

RESULTS

We assessed the efficacy of our approach using a proprietary dataset of MM, yielding notable advancements. Our dataset comprised 753 magnetic resonance imaging (MRI) two-dimensional (2D) slice images of the spinal regions from 45 patients with MM, along with their corresponding ground truth labels. These images were primarily obtained from three sequences: T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and short tau inversion recovery (STIR). Using image augmentation techniques, we expanded the dataset to 3,000 images, which were employed for both model training and prediction. Among these, 2,400 images were allocated for training purposes, while 600 images were reserved for validation and testing. Our method showed increase in the intersection over union (IoU) and Dice coefficients by 7.9 and 6.7 percentage points, respectively, as compared to the baseline model. Furthermore, we performed comparisons with alternative image segmentation methodologies, which confirmed the sophistication and efficacy of our proposed model.

CONCLUSIONS

Our proposed multiple myeloma segmentation net (MMNet), can effectively extract multiscale features from images and enhance the correlation between channel and spatial information. Furthermore, a systematic evaluation of the proposed network architecture was conducted on a self-constructed, limited dataset. This endeavor holds promise for offering valuable insights into the development of algorithms for future clinical applications.

摘要

背景

多发性骨髓瘤(MM)患者的骨髓浆细胞发生恶性病变,对骨质破坏表现出显著易感性,损害正常造血功能。准确有效地分割MM病变区域对于骨髓瘤的早期检测和诊断至关重要。然而,MM病变区域存在复杂的形状变化、边界模糊以及从点状病变到广泛骨质破坏的多尺度病变区域,这给实现精确分割带来了巨大挑战。因此,本研究旨在通过提取丰富的多尺度特征,开发一种更准确、更稳健的MM病变分割方法。

方法

在本文中,我们提出了一种专门为MM分割设计的新颖的多尺度特征融合编码-解码模型架构。在编码阶段,我们提出的多尺度特征提取模块——扩张密集连接网络(DCNet),用于系统地提取多尺度特征,从而扩大模型的感知域。在解码阶段,我们提出了CBAM空洞空间金字塔池化(CASPP)模块来增强多尺度特征的提取,使模型能够动态地对通道和空间信息进行优先级排序。随后,这些特征与最终输出特征图进行拼接,以优化分割结果。在特征融合瓶颈层,我们将动态特征融合(DyCat)模块纳入跳跃连接中,以动态调整特征提取参数和融合过程。

结果

我们使用MM的专有数据集评估了我们方法的有效性,取得了显著进展。我们的数据集包括45例MM患者脊柱区域的753张磁共振成像(MRI)二维(2D)切片图像及其相应的地面真值标签。这些图像主要从三个序列获得:T1加权成像(T1WI)、T2加权成像(T2WI)和短tau反转恢复(STIR)。使用图像增强技术,我们将数据集扩展到3000张图像,用于模型训练和预测。其中,2400张图像用于训练,600张图像用于验证和测试。与基线模型相比,我们的方法在交并比(IoU)和Dice系数上分别提高了7.9和6.7个百分点。此外,我们与其他图像分割方法进行了比较,证实了我们提出的模型的先进性和有效性。

结论

我们提出的多发性骨髓瘤分割网络(MMNet)能够有效地从图像中提取多尺度特征,并增强通道和空间信息之间的相关性。此外,我们在自建的有限数据集上对所提出的网络架构进行了系统评估。这一努力有望为未来临床应用算法的开发提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1037/11485342/5fd2e5c921eb/qims-14-10-7176-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验