Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-902, Brazil.
Institute of Computing, Federal University of Bahia, Salvador, 40170-110, Brazil.
Sci Rep. 2024 May 15;14(1):11176. doi: 10.1038/s41598-024-61420-9.
Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the identification of plasma cells in cytology examinations on hematological slides. At present, this is still a time-consuming manual task and has high labor costs. These challenges have adverse implications, which rely heavily on medical professionals' expertise and experience. To tackle these challenges, we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of hematological slides with a Deep Neural Network (DNN), to support specialists during the process of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained model to diagnose MM, we also make available to the community a fully-curated hematological slide dataset with thousands of images of plasma cells. Taken together, the setup we established here is a framework that researchers and hospitals with limited resources can promptly use. Our contributions provide practical results that have been directly applied in the public health system in Brazil. Given the open-source nature of the project, we anticipate it will be used and extended to diagnose other malignancies.
多发性骨髓瘤(MM)是一种血液系统恶性肿瘤,其特征是骨髓中浆细胞的克隆性增殖。诊断 MM 存在很大的挑战,涉及在血液学幻灯片的细胞学检查中识别浆细胞。目前,这仍然是一项耗时的手动任务,劳动力成本很高。这些挑战产生了不利影响,严重依赖医疗专业人员的专业知识和经验。为了应对这些挑战,我们使用人工智能进行了一项研究,特别是使用深度学习神经网络(DNN)对血液学幻灯片进行机器学习分析,以在诊断 MM 的过程中为专家提供支持。从这个意义上说,这项研究的贡献是双重的:除了用于诊断 MM 的训练模型外,我们还向社区提供了一个经过全面整理的血液学幻灯片数据集,其中包含数千张浆细胞图像。总的来说,我们建立的这个框架是一个资源有限的研究人员和医院可以迅速使用的框架。我们的贡献提供了实际的结果,这些结果已经直接应用于巴西的公共卫生系统。鉴于该项目的开源性质,我们预计它将被用于诊断其他恶性肿瘤并进行扩展。