Suppr超能文献

采用整合网络方法,利用遗传和大脑区域特异性蛋白质组学数据,鉴定阿尔茨海默病的候选基因和药物靶点。

Identifying candidate genes and drug targets for Alzheimer's disease by an integrative network approach using genetic and brain region-specific proteomic data.

机构信息

Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA.

Center for Precision Health, School of Biomedical Informatics, Houston, TX 77030, USA.

出版信息

Hum Mol Genet. 2022 Sep 29;31(19):3341-3354. doi: 10.1093/hmg/ddac124.

Abstract

Genome-wide association studies (GWAS) have identified more than 75 genetic variants associated with Alzheimer's disease (ad). However, how these variants function and impact protein expression in brain regions remain elusive. Large-scale proteomic datasets of ad postmortem brain tissues have become available recently. In this study, we used these datasets to investigate brain region-specific molecular pathways underlying ad pathogenesis and explore their potential drug targets. We applied our new network-based tool, Edge-Weighted Dense Module Search of GWAS (EW_dmGWAS), to integrate ad GWAS statistics of 472 868 individuals with proteomic profiles from two brain regions from two large-scale ad cohorts [parahippocampal gyrus (PHG), sample size n = 190; dorsolateral prefrontal cortex (DLPFC), n = 192]. The resulting network modules were evaluated using a scale-free network index, followed by a cross-region consistency evaluation. Our EW_dmGWAS analyses prioritized 52 top module genes (TMGs) specific in PHG and 58 TMGs in DLPFC, of which four genes (CLU, PICALM, PRRC2A and NDUFS3) overlapped. Those four genes were significantly associated with ad (GWAS gene-level false discovery rate < 0.05). To explore the impact of these genetic components on TMGs, we further examined their differentially co-expressed genes at the proteomic level and compared them with investigational drug targets. We pinpointed three potential drug target genes, APP, SNCA and VCAM1, specifically in PHG. Gene set enrichment analyses of TMGs in PHG and DLPFC revealed region-specific biological processes, tissue-cell type signatures and enriched drug signatures, suggesting potential region-specific drug repurposing targets for ad.

摘要

全基因组关联研究(GWAS)已经确定了 75 种以上与阿尔茨海默病(AD)相关的遗传变异。然而,这些变异如何在大脑区域发挥作用并影响蛋白质表达仍然难以捉摸。最近,AD 死后脑组织的大型蛋白质组数据集已经可用。在这项研究中,我们使用这些数据集来研究 AD 发病机制背后的大脑区域特异性分子途径,并探索其潜在的药物靶点。我们应用了我们新的基于网络的工具,即 GWAS 的边缘加权密集模块搜索(EW_dmGWAS),将 472868 名个体的 AD GWAS 统计数据与来自两个大型 AD 队列的两个大脑区域的蛋白质组谱[海马旁回(PHG),样本量 n=190;背外侧前额叶皮层(DLPFC),n=192]进行整合。使用无标度网络指数评估所得网络模块,然后进行跨区域一致性评估。我们的 EW_dmGWAS 分析优先考虑了 52 个在 PHG 中特异性的顶级模块基因(TMG)和 58 个在 DLPFC 中的 TMG,其中 4 个基因(CLU、PICALM、PRRC2A 和 NDUFS3)重叠。这四个基因与 AD 显著相关(GWAS 基因水平假发现率<0.05)。为了探索这些遗传成分对 TMG 的影响,我们进一步在蛋白质组水平上检查了它们差异共表达的基因,并将其与研究药物靶点进行了比较。我们在 PHG 中确定了三个潜在的药物靶点基因,即 APP、SNCA 和 VCAM1。PHG 和 DLPFC 的 TMG 基因集富集分析揭示了区域特异性的生物学过程、组织-细胞类型特征和丰富的药物特征,这表明 AD 可能存在区域特异性药物再利用靶点。

相似文献

引用本文的文献

6
A review and analysis of key biomarkers in Alzheimer's disease.阿尔茨海默病关键生物标志物的综述与分析
Front Neurosci. 2024 Feb 20;18:1358998. doi: 10.3389/fnins.2024.1358998. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验