Electrical and Computer Engineering, University of Miami, FL, 33146, USA.
Comput Biol Med. 2022 Aug;147:105595. doi: 10.1016/j.compbiomed.2022.105595. Epub 2022 May 10.
Segmentation of corneal layer interfaces in optical coherence tomography (OCT) images is necessary to generate thickness maps used for cornea diagnosis. In this paper, we propose PIPE-Net, a fully convolutional neural network with a pyramidal input, parallel encoders, and a densely connected decoder to segment four corneal layer interfaces. The pyramidal input is encoded using parallel encoders, which allows the network to process a larger receptive field. The encoders are connected level-wise to the decoder through residual summations. The decoder is densely connected using residual summations between its levels to enhance the gradient flow. We use a linear growth rate for the number of feature maps to limit the network parameters, which allows the network to be trained using a small dataset. A dataset of 295 OCT images was obtained and manually segmented by experienced and trained operators. We implemented other related networks in the literature for comparison with our proposed network. We performed k-fold cross-validation to evaluate all the networks, and their performance was evaluated using precision-recall curves and average precision. PIPE-Net outperformed the other networks with an average precision of 0.95. The layer interfaces were detected and smoothed using the Savitzky-Golay filter, and they were closer to the expert.
角膜层界面的分割在光学相干断层扫描 (OCT) 图像中是必要的,用于生成用于角膜诊断的厚度图。在本文中,我们提出了 PIPE-Net,这是一种具有金字塔式输入、并行编码器和密集连接解码器的全卷积神经网络,用于分割四个角膜层界面。金字塔式输入使用并行编码器进行编码,这使得网络能够处理更大的感受野。编码器通过残差求和与解码器级联。解码器通过残差求和在其级别之间密集连接,以增强梯度流。我们使用特征图数量的线性增长率来限制网络参数,这使得网络可以使用小数据集进行训练。我们获得了一个包含 295 张 OCT 图像的数据集,并由经验丰富且经过培训的操作员手动进行分割。我们实现了文献中的其他相关网络,以便与我们提出的网络进行比较。我们进行了 k 折交叉验证来评估所有的网络,并使用精度-召回曲线和平均精度来评估它们的性能。PIPE-Net 的平均精度为 0.95,优于其他网络。使用 Savitzky-Golay 滤波器对层界面进行检测和平滑,使其更接近专家。