Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
German Research Center for Artificial Intelligence, Lübeck, Germany.
Int J Comput Assist Radiol Surg. 2022 Apr;17(4):699-710. doi: 10.1007/s11548-022-02577-4. Epub 2022 Mar 3.
The registration of medical images often suffers from missing correspondences due to inter-patient variations, pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valuable information. Detecting non-corresponding regions simultaneously with the registration process helps generating better deformations and has been investigated thoroughly with classical iterative frameworks but rarely with deep learning-based methods.
We present the joint non-correspondence segmentation and image registration network (NCR-Net), a convolutional neural network (CNN) trained on a Mumford-Shah-like functional, transferring the classical approach to the field of deep learning. NCR-Net consists of one encoding and two decoding parts allowing the network to simultaneously generate diffeomorphic deformations and segment non-correspondences. The loss function is composed of a masked image distance measure and regularization of deformation field and segmentation output. Additionally, anatomical labels are used for weak supervision of the registration task. No manual segmentations of non-correspondences are required.
The proposed network is evaluated on the publicly available LPBA40 dataset with artificially added stroke lesions and a longitudinal optical coherence tomography (OCT) dataset of patients with age-related macular degeneration. The LPBA40 data are used to quantitatively assess the segmentation performance of the network, and it is shown qualitatively that NCR-Net can be used for the unsupervised segmentation of pathologies in OCT images. Furthermore, NCR-Net is compared to a registration-only network and state-of-the-art registration algorithms showing that NCR-Net achieves competitive performance and superior robustness to non-correspondences.
NCR-Net, a CNN for simultaneous image registration and unsupervised non-correspondence segmentation, is presented. Experimental results show the network's ability to segment non-correspondence regions in an unsupervised manner and its robust registration performance even in the presence of large pathologies.
由于患者之间的差异、病变及其进展导致不合理的变形,医学图像的配准常常会出现对应关系缺失的问题,从而导致配准错误,并可能消除有价值的信息。在注册过程中同时检测到不对应的区域有助于生成更好的变形,并且已经在经典迭代框架中进行了深入研究,但很少在基于深度学习的方法中进行研究。
我们提出了联合非对应分割和图像配准网络(NCR-Net),这是一个基于 Mumford-Shah 函数的卷积神经网络(CNN),将经典方法应用于深度学习领域。NCR-Net 由一个编码部分和两个解码部分组成,允许网络同时生成变形和分割非对应区域。损失函数由掩模图像距离度量和变形场和分割输出的正则化组成。此外,还使用解剖标签对配准任务进行弱监督。不需要手动分割非对应区域。
该网络在具有人工添加的中风病变的公开可用的 LPBA40 数据集和具有年龄相关性黄斑变性的患者的纵向光学相干断层扫描(OCT)数据集上进行了评估。LPBA40 数据用于定量评估网络的分割性能,并定性地表明 NCR-Net 可用于 OCT 图像中病理的无监督分割。此外,NCR-Net 与仅注册网络和最先进的注册算法进行了比较,结果表明 NCR-Net 具有竞争力的性能和对非对应区域的更好鲁棒性。
提出了一种用于同时进行图像配准和无监督非对应分割的 CNN-NCR-Net。实验结果表明,该网络能够以无监督的方式分割非对应区域,并且即使存在大的病变,其配准性能也很稳健。