Suppr超能文献

基于深度学习的医学图像病理同时配准和无监督非对应分割。

Deep learning-based simultaneous registration and unsupervised non-correspondence segmentation of medical images with pathologies.

机构信息

Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.

German Research Center for Artificial Intelligence, Lübeck, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2022 Apr;17(4):699-710. doi: 10.1007/s11548-022-02577-4. Epub 2022 Mar 3.

Abstract

PURPOSE

The registration of medical images often suffers from missing correspondences due to inter-patient variations, pathologies and their progression leading to implausible deformations that cause misregistrations and might eliminate valuable information. Detecting non-corresponding regions simultaneously with the registration process helps generating better deformations and has been investigated thoroughly with classical iterative frameworks but rarely with deep learning-based methods.

METHODS

We present the joint non-correspondence segmentation and image registration network (NCR-Net), a convolutional neural network (CNN) trained on a Mumford-Shah-like functional, transferring the classical approach to the field of deep learning. NCR-Net consists of one encoding and two decoding parts allowing the network to simultaneously generate diffeomorphic deformations and segment non-correspondences. The loss function is composed of a masked image distance measure and regularization of deformation field and segmentation output. Additionally, anatomical labels are used for weak supervision of the registration task. No manual segmentations of non-correspondences are required.

RESULTS

The proposed network is evaluated on the publicly available LPBA40 dataset with artificially added stroke lesions and a longitudinal optical coherence tomography (OCT) dataset of patients with age-related macular degeneration. The LPBA40 data are used to quantitatively assess the segmentation performance of the network, and it is shown qualitatively that NCR-Net can be used for the unsupervised segmentation of pathologies in OCT images. Furthermore, NCR-Net is compared to a registration-only network and state-of-the-art registration algorithms showing that NCR-Net achieves competitive performance and superior robustness to non-correspondences.

CONCLUSION

NCR-Net, a CNN for simultaneous image registration and unsupervised non-correspondence segmentation, is presented. Experimental results show the network's ability to segment non-correspondence regions in an unsupervised manner and its robust registration performance even in the presence of large pathologies.

摘要

目的

由于患者之间的差异、病变及其进展导致不合理的变形,医学图像的配准常常会出现对应关系缺失的问题,从而导致配准错误,并可能消除有价值的信息。在注册过程中同时检测到不对应的区域有助于生成更好的变形,并且已经在经典迭代框架中进行了深入研究,但很少在基于深度学习的方法中进行研究。

方法

我们提出了联合非对应分割和图像配准网络(NCR-Net),这是一个基于 Mumford-Shah 函数的卷积神经网络(CNN),将经典方法应用于深度学习领域。NCR-Net 由一个编码部分和两个解码部分组成,允许网络同时生成变形和分割非对应区域。损失函数由掩模图像距离度量和变形场和分割输出的正则化组成。此外,还使用解剖标签对配准任务进行弱监督。不需要手动分割非对应区域。

结果

该网络在具有人工添加的中风病变的公开可用的 LPBA40 数据集和具有年龄相关性黄斑变性的患者的纵向光学相干断层扫描(OCT)数据集上进行了评估。LPBA40 数据用于定量评估网络的分割性能,并定性地表明 NCR-Net 可用于 OCT 图像中病理的无监督分割。此外,NCR-Net 与仅注册网络和最先进的注册算法进行了比较,结果表明 NCR-Net 具有竞争力的性能和对非对应区域的更好鲁棒性。

结论

提出了一种用于同时进行图像配准和无监督非对应分割的 CNN-NCR-Net。实验结果表明,该网络能够以无监督的方式分割非对应区域,并且即使存在大的病变,其配准性能也很稳健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46bb/8948150/c9096a3a286a/11548_2022_2577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验