Suppr超能文献

ScLNet:一个包含巩膜镜光学相干断层扫描(OCT)层分割数据集和新型多任务模型的角膜数据集

ScLNet: A cornea with scleral lens OCT layers segmentation dataset and new multi-task model.

作者信息

Cao Yang, le Yu Xiang, Yao Han, Jin Yue, Lin Kuangqing, Shi Ce, Cheng Hongling, Lin Zhiyang, Jiang Jun, Gao Hebei, Shen Meixiao

机构信息

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325000, China.

School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325035, China.

出版信息

Heliyon. 2024 Jun 29;10(13):e33911. doi: 10.1016/j.heliyon.2024.e33911. eCollection 2024 Jul 15.

Abstract

OBJECTIVE

To develop deep learning methods with high accuracy for segmenting irregular corneas and detecting the tear fluid reservoir (TFR) boundary under the scleral lens. Additionally, this study aims to provide a publicly available cornea with scleral lens OCT dataset, including manually labeled layer masks for training and validation of segmentation algorithms. This study introduces ScLNet, a dataset comprising cornea with Scleral Lens (ScL) optical coherence tomography (OCT) images with layer annotations, and a multi-task network designed to achieve rapid, accurate, automated segmentation of scleral lens with regular and irregular corneas.

METHODS

We created a dataset comprising 31,360 OCT images with scleral lens annotations. The network architecture includes an encoder with multi-scale input and a context coding layer, along with two decoders for specific tasks. The primary task focuses on predicting ScL, TFR, and cornea regions, while the auxiliary task, aimed at predicting the boundaries of ScL, TFR, and cornea, enhances feature extraction for the main task. Segmentation results were compared with state-of-the-art methods and evaluated using Dice similarity coefficient (DSC), intersection over union (IoU), Matthews correlation coefficient (MCC), Precision, and Hausdorff distance (HD).

RESULTS

ScLNet achieves 98.22 % DSC, 96.50 % IoU, 98.13 % MCC, 98.35 % Precision, and 3.6840 HD (in pixels) in segmenting ScL; 97.78 % DSC, 95.66 % IoU, 97.71 % MCC, 97.70 % Precision, and 3.7838 HD (in pixels) in segmenting TFR; and 99.22 % DSC, 98.45 % IoU, 99.15 % MCC, 99.14 % Precision, and 3.5355 HD (in pixels) in segmenting cornea. The layer interfaces recognized by ScLNet closely align with expert annotations, as evidenced by high IoU scores. Boundary metrics further confirm its effectiveness.

CONCLUSION

We constructed a dataset of corneal OCT images with ScL wearing, which includes regular and irregular cornea patients. The proposed ScLNet achieves high accuracy in extracting ScL, TFR, and corneal layer masks and boundaries from OCT images of the dataset.

摘要

目的

开发高精度的深度学习方法,用于分割不规则角膜并检测巩膜镜下的泪液储存器(TFR)边界。此外,本研究旨在提供一个公开可用的带有巩膜镜的角膜光学相干断层扫描(OCT)数据集,包括用于分割算法训练和验证的手动标注的层掩码。本研究介绍了ScLNet,这是一个包含带有巩膜镜(ScL)的角膜光学相干断层扫描(OCT)图像及层注释的数据集,以及一个旨在对规则和不规则角膜的巩膜镜进行快速、准确、自动分割的多任务网络。

方法

我们创建了一个包含31360张带有巩膜镜注释的OCT图像的数据集。网络架构包括一个具有多尺度输入的编码器和一个上下文编码层,以及两个用于特定任务的解码器。主要任务专注于预测ScL、TFR和角膜区域,而辅助任务旨在预测ScL、TFR和角膜的边界,增强主要任务的特征提取。将分割结果与现有最先进的方法进行比较,并使用骰子相似系数(DSC)、交并比(IoU)、马修斯相关系数(MCC)、精度和豪斯多夫距离(HD)进行评估。

结果

ScLNet在分割ScL时,DSC达到98.22%,IoU达到96.50%,MCC达到98.13%,精度达到98.35%,HD为3.6840像素(以像素为单位);在分割TFR时,DSC达到97.78%,IoU达到95.66%,MCC达到97.71%,精度达到97.70%,HD为3.7838像素(以像素为单位);在分割角膜时,DSC达到99.22%,IoU达到98.45%,MCC达到99.15%,精度达到99.14%,HD为3.5355像素(以像素为单位)。ScLNet识别的层界面与专家注释紧密对齐,高IoU分数证明了这一点。边界指标进一步证实了其有效性。

结论

我们构建了一个佩戴ScL的角膜OCT图像数据集,其中包括规则和不规则角膜患者。所提出的ScLNet在从数据集中的OCT图像中提取ScL、TFR和角膜层掩码及边界方面具有很高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f69/11283045/9d9dd9c533c1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验