Suppr超能文献

特应性皮炎患者对度普利尤单抗无应答的预测因素:机器学习分析。

Predictors of nonresponse to dupilumab in patients with atopic dermatitis: A machine learning analysis.

机构信息

Dermatology Research and Education Foundation, Irvine, California.

Department of Dermatology and Skin Science and Probity Medical Research, University of British Columbia, Surrey, British Columbia, Canada.

出版信息

Ann Allergy Asthma Immunol. 2022 Sep;129(3):354-359.e5. doi: 10.1016/j.anai.2022.05.025. Epub 2022 May 28.

Abstract

BACKGROUND

Many patients with atopic dermatitis (AD) have a suboptimal response to systemic therapy.

OBJECTIVE

This study assessed predictors of nonresponse to dupilumab in patients with AD.

METHODS

Data (April 2017 through June 2019) for patients aged 12 years and above with AD (International Classification of Diseases-9/10-Clinical Modification: 691.8/L20.x) who initiated dupilumab on or after April 1, 2017 (index date) were collected from an electronic health record and insurance claims database. Nonresponse indicators (dupilumab discontinuation, addition of another systemic therapy or phototherapy, addition of a high-potency topical corticosteroid, AD-related hospital visit, AD-related emergency department visit, incident skin infection) were predicted from available demographic and clinical variables using machine learning.

RESULTS

Among 419 patients (mean age: 45 years), 145 (35%) experienced at least 1 indicator of nonresponse in the 6-month postindex period. In patients with at least 1 indicator, the most common was dupilumab discontinuation (47% [68/145]). Of note, this analysis could not capture nonmedical reasons for dupilumab discontinuation (eg, cost, access). The most common predictors of nonresponse were a claim for ibuprofen (in 69% of patients with a nonresponse indicator) and a Quan-Charlson Comorbidity Index value of 3 to 4 (59%).

CONCLUSION

Systemic dupilumab therapy for AD can be associated with a relatively high prevalence of nonresponse indicators. Factors associated with these indicators-that is, predictors of nonresponse-may be used to optimize disease management.

摘要

背景

许多特应性皮炎(AD)患者对全身治疗的反应不佳。

目的

本研究评估了 AD 患者对度普利尤单抗无应答的预测因素。

方法

从电子健康记录和保险索赔数据库中收集了 2017 年 4 月至 2019 年 6 月期间年龄在 12 岁及以上的 AD 患者(国际疾病分类第 9 版/第 10 版临床修订版:691.8/L20.x)的数据,这些患者在 2017 年 4 月 1 日(索引日期)或之后开始使用度普利尤单抗。使用机器学习从可用的人口统计学和临床变量中预测无应答指标(度普利尤单抗停药、添加另一种全身治疗或光疗、添加强效外用皮质类固醇、AD 相关就诊、AD 相关急诊就诊、皮肤感染)。

结果

在 419 名患者(平均年龄:45 岁)中,有 145 名(35%)在索引后 6 个月内至少有 1 项无应答指标。在至少有 1 项无应答指标的患者中,最常见的是度普利尤单抗停药(47%[68/145])。值得注意的是,本分析无法捕捉到度普利尤单抗停药的非医疗原因(例如,费用、可及性)。无应答的最常见预测因素是布洛芬(在 69%有无应答指标的患者中)和 Quan-Charlson 合并症指数值为 3 至 4(59%)。

结论

AD 的全身性度普利尤单抗治疗可能与相对较高的无应答指标患病率相关。与这些指标相关的因素,即无应答的预测因素,可用于优化疾病管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验