Suppr超能文献

小分子介导的胰岛素过度分泌诱导短暂内质网应激反应和β细胞功能丧失。

Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function.

机构信息

Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA.

Departments of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.

出版信息

Endocrinology. 2022 Jul 1;163(7). doi: 10.1210/endocr/bqac081.

Abstract

Pancreatic islet beta cells require a fine-tuned endoplasmic reticulum (ER) stress response for normal function; abnormal ER stress contributes to diabetes pathogenesis. Here, we identified a small molecule, SW016789, with time-dependent effects on beta cell ER stress and function. Acute treatment with SW016789 potentiated nutrient-induced calcium influx and insulin secretion, while chronic exposure to SW016789 transiently induced ER stress and shut down secretory function in a reversible manner. Distinct from the effects of thapsigargin, SW016789 did not affect beta cell viability or apoptosis, potentially due to a rapid induction of adaptive genes, weak signaling through the eIF2α kinase PERK, and lack of oxidative stress gene Txnip induction. We determined that SW016789 acted upstream of voltage-dependent calcium channels (VDCCs) and potentiated nutrient- but not KCl-stimulated calcium influx. Measurements of metabolomics, oxygen consumption rate, and G protein-coupled receptor signaling did not explain the potentiating effects of SW016789. In chemical cotreatment experiments, we discovered synergy between SW016789 and activators of protein kinase C and VDCCs, suggesting involvement of these pathways in the mechanism of action. Finally, chronically elevated calcium influx was required for the inhibitory impact of SW016789, as blockade of VDCCs protected human islets and MIN6 beta cells from hypersecretion-induced dysfunction. We conclude that beta cells undergoing this type of pharmacological hypersecretion have the capacity to suppress their function to mitigate ER stress and avoid apoptosis. These results have the potential to uncover beta cell ER stress mitigation factors and add support to beta cell rest strategies to preserve function.

摘要

胰岛β细胞需要精细调节内质网(ER)应激反应才能正常发挥功能;异常的 ER 应激会导致糖尿病发病机制。在这里,我们鉴定了一种小分子 SW016789,它对β细胞 ER 应激和功能具有时间依赖性的影响。急性处理 SW016789 增强了营养诱导的钙内流和胰岛素分泌,而慢性暴露于 SW016789 以可逆的方式短暂诱导 ER 应激并关闭分泌功能。与他普西庚的作用不同,SW016789 不影响β细胞活力或凋亡,这可能是由于快速诱导适应性基因、通过 eIF2α 激酶 PERK 传递较弱的信号以及缺乏氧化应激基因 Txnip 诱导所致。我们确定 SW016789 作用于电压依赖性钙通道(VDCCs)上游,并增强了营养但不是 KCl 刺激的钙内流。代谢组学、耗氧量和 G 蛋白偶联受体信号的测量无法解释 SW016789 的增强作用。在化学共处理实验中,我们发现 SW016789 与蛋白激酶 C 和 VDCCs 的激活剂之间存在协同作用,表明这些途径参与了作用机制。最后,慢性升高的钙内流是 SW016789 抑制作用所必需的,因为 VDCC 阻断可保护人胰岛和 MIN6β细胞免受高分泌诱导的功能障碍。我们得出结论,经历这种类型的药理学高分泌的β细胞有能力抑制其功能以减轻 ER 应激并避免凋亡。这些结果有可能揭示β细胞 ER 应激缓解因素,并为保护β细胞功能的β细胞休息策略提供支持。

相似文献

本文引用的文献

8
Recent advances in identifying protein targets in drug discovery.近年来在药物发现中鉴定蛋白质靶标的进展。
Cell Chem Biol. 2021 Mar 18;28(3):394-423. doi: 10.1016/j.chembiol.2020.12.001. Epub 2020 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验