Suppr超能文献

免疫检查点抑制剂治疗的癌症患者的转录组数据集:系统评价。

Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: a systematic review.

机构信息

Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.

Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary.

出版信息

J Transl Med. 2022 May 31;20(1):249. doi: 10.1186/s12967-022-03409-4.

Abstract

The availability of immune-checkpoint inhibitors (ICI) in the last decade has resulted in a paradigm shift in certain areas of oncology. Patients can be treated either by a monotherapy of anti-CTLA-4 (tremelimumab or ipilimumab), anti-PD-1 (nivolumab or pembrolizumab), or anti-PD-L1 (avelumab or atezolizumab or durvalumab) or as combination therapy of anti-CTLA-4 and anti-PD-1. To maximize the clinical treatment benefit of cancer immunotherapy, the prediction of the actual immune response by the identification and application of clinically useful biomarkers will be required. Whole transcriptomic datasets of patients with ICI treatment could provide the basis for large-scale discovery and ranking of such potential biomarker candidates. In this review, we summarize currently available transcriptomic data from different biological sources (whole blood, fresh-frozen tissue, FFPE) obtained by different methods (microarray, RNA-Seq, RT-qPCR). We directly include only results from clinical trials and other investigations where an ICI treatment was administered. The available datasets are grouped based on the administered treatment and we also summarize the most important results in the individual cohorts. We discuss the limitations and shortcomings of the available datasets. Finally, a subset of animal studies is reviewed to provide an overview of potential in vivo ICI investigations. Our review can provide a swift reference for researchers aiming to find the most suitable study for their investigation, thus saving a significant amount of time.

摘要

在过去的十年中,免疫检查点抑制剂(ICI)的出现导致了肿瘤学某些领域的范式转变。患者可以接受抗 CTLA-4(替西木单抗或伊匹单抗)、抗 PD-1(纳武单抗或帕博利珠单抗)或抗 PD-L1(avelumab 或阿替利珠单抗或度伐利尤单抗)的单药治疗,或抗 CTLA-4 和抗 PD-1 的联合治疗。为了最大限度地提高癌症免疫治疗的临床治疗效果,需要通过识别和应用具有临床意义的生物标志物来预测实际的免疫反应。ICI 治疗患者的全转录组数据集可以为大规模发现和排列这些潜在的生物标志物候选物提供基础。在这篇综述中,我们总结了来自不同生物来源(全血、新鲜冷冻组织、FFPE)的不同方法(微阵列、RNA-Seq、RT-qPCR)获得的当前可用的转录组数据。我们仅直接包括通过 ICI 治疗进行的临床试验和其他研究的结果。根据所给予的治疗对可用数据集进行分组,我们还总结了各个队列中的最重要结果。我们讨论了现有数据集的局限性和缺点。最后,我们回顾了一组动物研究,以提供潜在的体内 ICI 研究的概述。我们的综述可以为研究人员提供快速参考,帮助他们找到最适合其研究的研究,从而节省大量时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a748/9153191/01da1030aebf/12967_2022_3409_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验