Suppr超能文献

用于预测头颈部癌症对免疫检查点阻断反应的生物标志物和 3D 模型(综述)。

Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review).

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany.

Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden‑Württemberg‑Hessen, D‑68167 Mannheim, Germany.

出版信息

Int J Oncol. 2022 Jul;61(1). doi: 10.3892/ijo.2022.5378. Epub 2022 Jun 1.

Abstract

Immunotherapy has evolved into a powerful tool in the fight against a number of types of cancer, including head and neck squamous cell carcinomas (HNSCC). Although checkpoint inhibition (CPI) has definitely enriched the treatment options for advanced stage HNSCC during the past decade, the percentage of patients responding to treatment is widely varying between 14‑32% in second‑line setting in recurrent or metastatic HNSCC with a sporadic durability. Clinical response and, consecutively, treatment success remain unpredictable in most of the cases. One potential factor is the expression of target molecules of the tumor allowing cancer cells to acquire therapy resistance mechanisms. Accordingly, analyzing and modeling the complexity of the tumor microenvironment (TME) is key to i) stratify subgroups of patients most likely to respond to CPI and ii) to define new combinatorial treatment regimens. Particularly in a heterogeneous disease such as HNSCC, thoroughly studying the interactions and crosstalking between tumor and TME cells is one of the biggest challenges. Sophisticated 3D models are therefore urgently needed to be able to validate such basic science hypotheses and to test novel immuno‑oncologic treatment regimens in consideration of the individual biology of each tumor. The present review will first summarize recent findings on immunotherapy, predictive biomarkers, the role of the TME and signaling cascades eliciting during CPI. Second, it will highlight the significance of current promising approaches to establish HNSCC 3D models for new immunotherapies. The results are encouraging and indicate that data obtained from patient‑specific tumors in a dish might be finally translated into personalized immuno‑oncology.

摘要

免疫疗法已成为对抗多种癌症(包括头颈部鳞状细胞癌[HNSCC])的有力工具。尽管检查点抑制(CPI)在过去十年中确实丰富了晚期 HNSCC 的治疗选择,但在复发性或转移性 HNSCC 的二线治疗中,应答治疗的患者比例在 14-32%之间广泛变化,且具有零星的持久性。在大多数情况下,临床反应和治疗成功仍然不可预测。一个潜在的因素是肿瘤靶分子的表达,使癌细胞获得治疗耐药机制。因此,分析和模拟肿瘤微环境(TME)的复杂性是 i)对最有可能对 CPI 产生反应的患者亚组进行分层的关键,以及 ii)定义新的组合治疗方案的关键。特别是在 HNSCC 等异质性疾病中,彻底研究肿瘤和 TME 细胞之间的相互作用和串扰是最大的挑战之一。因此,迫切需要复杂的 3D 模型,以便能够验证这些基础科学假设,并考虑到每个肿瘤的个体生物学,测试新的免疫肿瘤治疗方案。本综述将首先总结免疫疗法、预测生物标志物、TME 的作用和 CPI 引发的信号级联的最新发现。其次,它将强调建立用于新免疫疗法的 HNSCC 3D 模型的当前有前途方法的重要性。结果令人鼓舞,并表明从患者特异性肿瘤中获得的数据最终可能转化为个性化免疫肿瘤学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10e/9183766/53555e020d8c/IJO-61-01-05378-g00.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验