Suppr超能文献

spatialGE:利用空间转录组学对肿瘤微环境异质性进行定量和可视化分析。

spatialGE: quantification and visualization of the tumor microenvironment heterogeneity using spatial transcriptomics.

作者信息

Ospina Oscar E, Wilson Christopher M, Soupir Alex C, Berglund Anders, Smalley Inna, Tsai Kenneth Y, Fridley Brooke L

机构信息

Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA.

Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA.

出版信息

Bioinformatics. 2022 Apr 28;38(9):2645-2647. doi: 10.1093/bioinformatics/btac145.

Abstract

SUMMARY

Spatially resolved transcriptomics promises to increase our understanding of the tumor microenvironment and improve cancer prognosis and therapies. Nonetheless, analytical methods to explore associations between the spatial heterogeneity of the tumor and clinical data are not available. Hence, we have developed spatialGE, a software that provides visualizations and quantification of the tumor microenvironment heterogeneity through gene expression surfaces, spatial heterogeneity statistics that can be compared against clinical information, spot-level cell deconvolution and spatially informed clustering, all using a new data object to store data and resulting analyses simultaneously.

AVAILABILITY AND IMPLEMENTATION

The R package and tutorial/vignette are available at https://github.com/FridleyLab/spatialGE. A script to reproduce the analyses in this manuscript is available in Supplementary information. The Thrane study data included in spatialGE was made available from the public available from the website https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

空间分辨转录组学有望增进我们对肿瘤微环境的理解,并改善癌症预后和治疗方法。然而,目前尚无探索肿瘤空间异质性与临床数据之间关联的分析方法。因此,我们开发了spatialGE软件,它可通过基因表达表面对肿瘤微环境异质性进行可视化和量化,提供可与临床信息相比较的空间异质性统计数据、斑点水平的细胞反卷积和空间信息聚类,所有这些都使用一个新的数据对象来同时存储数据和分析结果。

可用性和实现方式

R包及教程/示例可在https://github.com/FridleyLab/spatialGE获取。补充信息中提供了重现本文分析的脚本。spatialGE中包含的Thrane研究数据可从网站https://www.spatialresearch.org/resources-published-datasets/doi-10-1158-0008-5472-can-18-0747/公开获取。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

10
Novel insights from spatial transcriptome analysis in solid tumors.实体瘤空间转录组分析的新见解。
Int J Biol Sci. 2023 Sep 4;19(15):4778-4792. doi: 10.7150/ijbs.83098. eCollection 2023.

引用本文的文献

1
Topology-aware pathway analysis of spatial transcriptomics.空间转录组学的拓扑感知通路分析
PeerJ. 2025 Aug 14;13:e19729. doi: 10.7717/peerj.19729. eCollection 2025.
2
Informatics at the Frontier of Cancer Research.癌症研究前沿的信息学
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
3
Dissection of tumoral niches using spatial transcriptomics and deep learning.利用空间转录组学和深度学习剖析肿瘤微环境
iScience. 2025 Mar 13;28(4):112214. doi: 10.1016/j.isci.2025.112214. eCollection 2025 Apr 18.

本文引用的文献

2
Spatial transcriptomics at subspot resolution with BayesSpace.基于 BayesSpace 的亚斑点分辨率空间转录组学。
Nat Biotechnol. 2021 Nov;39(11):1375-1384. doi: 10.1038/s41587-021-00935-2. Epub 2021 Jun 3.
3
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
6
Spatially resolved transcriptomics and its applications in cancer.空间分辨转录组学及其在癌症中的应用。
Curr Opin Genet Dev. 2021 Feb;66:70-77. doi: 10.1016/j.gde.2020.12.002. Epub 2021 Jan 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验