Suppr超能文献

基于功能化有机填料的集成膜用于环境修复。

Functionalized organic filler based integrated membranes for environmental remediation.

机构信息

Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan.

Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan; Department of Food Engineering and Biotechnology, University of Engineering and Technology, Lahore, New Campus, Pakistan.

出版信息

Chemosphere. 2022 Sep;303(Pt 2):135073. doi: 10.1016/j.chemosphere.2022.135073. Epub 2022 May 26.

Abstract

Mixed matrix membranes (MMMs) are synthesized for efficient CO separation released from various anthropogenic sources, which are due to global environmental concerns. The synergetic effect of porous nitrogen-rich, CO-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO competent. The development of various loadings of porphyrin poly(N-isopropyl Acryl Amide) (P-NIPAM)as functionalized organic fillers (5-20%) in polysulfone (PSU) through solution casting is carried out followed by the various characterizations including field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectrometer(FT-IR) analysis and pure and mixed gas permeations ranging from 2 to 10 bar feed pressure. Due to both organic species interactions in the matrix, well-distributed fillers and homogenous surfaces, and cross-sectional structures were observed due to π-π interactions and Lewis's basic functionalities. The strong affinity of porous nitrogen-rich and CO-philic fillers through gas permeation analysis showed high CO/CH and CO/N gas performance that surpassed Robeson's upper bound limit. Comparatively, MMMs showed improved CO/CH permeabilities from 87.5 ± 0.5 Barrer to 88.2 ± 0.9 Barrer than pure polymer matrix. For CO/N, CO permeabilities improved to 75 ± 0.8 Barrer than pure polymer matrix. For both gas pairs (CO/CH, CO/N), respective pureselectivities (84%; 86%) and binary selectivities (85% and 85%)were improved. Various theoretical gas permeation models were used to predict CO permeabilities for MMMs from which the modified Maxwell-Wagner-Sillar model showed the least AARE% of 0.87. The results showed promising results for efficient CO separation due to exceptional functionalized P-PNIPAM affinitive properties. Finally, cost analysis reflected the inflated cost of membranes production for industrial setup using indigenous resources.

摘要

混合基质膜(MMM)是为从各种人为来源中释放的有效 CO 分离而合成的,这是由于全球环境问题。在混合基质膜(MMM)中,多孔富氮、CO 亲和填充剂和聚合物的协同作用可以实现 CO 的有效分离。通过溶液浇铸法在聚砜(PSU)中制备了不同负载量的卟啉聚(N-异丙基丙烯酰胺)(P-NIPAM)作为功能化有机填料(5-20%),并进行了各种特性分析,包括场发射扫描电子显微镜(FESEM)、X 射线衍射分析(XRD)、傅里叶变换红外光谱仪(FT-IR)分析以及从 2 到 10 bar 进料压力的纯气和混合气渗透。由于基质中有机物种的相互作用、填充剂的均匀分布和均匀的表面以及由于π-π相互作用和路易斯碱性官能团的存在而观察到的横截面结构。通过气体渗透分析,多孔富氮和 CO 亲和填充剂的强亲和力表现出高的 CO/CH 和 CO/N 气体性能,超过了 Robeson 的上限。相比之下,MMM 显示出比纯聚合物基质更高的 CO/CH 渗透性,从 87.5±0.5 Barrer 提高到 88.2±0.9 Barrer。对于 CO/N,CO 渗透率提高到 75±0.8 Barrer 高于纯聚合物基质。对于这两种气体对(CO/CH,CO/N),分别提高了纯选择性(84%;86%)和二元选择性(85%和 85%)。使用各种理论气体渗透模型来预测 MMMs 的 CO 渗透率,其中改进的 Maxwell-Wagner-Sillar 模型显示出最小的 AARE%为 0.87。结果表明,由于具有特殊功能化的 P-PNIPAM 亲和特性,MMM 对有效 CO 分离具有广阔的应用前景。最后,成本分析反映了使用本土资源进行工业装置生产时膜生产成本的增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验