Suppr超能文献

人工智能和内镜医师对炎症性肠病中发生的肿瘤的诊断能力:一项初步研究。

The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study.

机构信息

Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.

Department of internal medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan.

出版信息

J Gastroenterol Hepatol. 2022 Aug;37(8):1610-1616. doi: 10.1111/jgh.15904. Epub 2022 Jun 4.

Abstract

BACKGROUND AND AIM

Although endoscopic resection with careful surveillance instead of total proctocolectomy become to be permitted for visible low-grade dysplasia, it is unclear how accurately endoscopists can differentiate these lesions, as classifying neoplasias occurring in inflammatory bowel disease (IBDN) is exceedingly challenging due to background chronic inflammation. We evaluated a pilot model of an artificial intelligence (AI) system for classifying IBDN and compared it with the endoscopist's ability.

METHODS

This study used a deep convolutional neural network, the EfficientNet-B3. Among patients who underwent treatment for IBDN at two hospitals between 2003 and 2021, we selected 862 non-magnified endoscopic images from 99 IBDN lesions and utilized 6 375 352 images that were increased by data augmentation for the development of AI. We evaluated the diagnostic ability of AI using two classifications: the "adenocarcinoma/high-grade dysplasia" and "low-grade dysplasia/sporadic adenoma/normal mucosa" groups. We compared the diagnostic accuracy between AI and endoscopists (three non-experts and four experts) using 186 test set images.

RESULTS

The diagnostic ability of the experts/non-experts/AI for the two classifications in the test set images had a sensitivity of 60.5% (95% confidence interval [CI]: 54.5-66.3)/70.5% (95% CI: 63.8-76.6)/72.5% (95% CI: 60.4-82.5), specificity of 88.0% (95% CI: 84.7-90.8)/78.8% (95% CI: 74.3-83.1)/82.9% (95% CI: 74.8-89.2), and accuracy of 77.8% (95% CI: 74.7-80.8)/75.8% (95% CI: 72-79.3)/79.0% (95% CI: 72.5-84.6), respectively.

CONCLUSIONS

The diagnostic accuracy of the two classifications of IBDN was higher than that of the experts. Our AI system is valuable enough to contribute to the next generation of clinical practice.

摘要

背景与目的

虽然对于可见的低级别异型增生,可以采用内镜下切除并密切监测的方法来替代全结肠直肠切除术,但内镜医生能否准确地区分这些病变仍不清楚,因为分类发生在炎症性肠病(IBDN)中的肿瘤极具挑战性,这是由于存在慢性炎症背景。我们评估了一种用于分类 IBDN 的人工智能(AI)系统的试点模型,并将其与内镜医生的能力进行了比较。

方法

本研究使用深度卷积神经网络,即 EfficientNet-B3。我们从 2003 年至 2021 年间在两家医院接受 IBDN 治疗的患者中,选择了 99 个 IBDN 病变中的 862 个非放大内镜图像,并利用数据扩充增加了 6 375 352 个 AI 开发用图像。我们使用“腺癌/高级别异型增生”和“低级别异型增生/散发性腺瘤/正常黏膜”两个分类来评估 AI 的诊断能力。我们使用 186 个测试集图像比较了 AI 与三位非专家和四位专家之间的诊断准确性。

结果

在测试集中,专家/非专家/AI 对这两种分类的诊断能力的敏感性分别为 60.5%(95%可信区间[CI]:54.5-66.3)/70.5%(95% CI:63.8-76.6)/72.5%(95% CI:60.4-82.5),特异性分别为 88.0%(95% CI:84.7-90.8)/78.8%(95% CI:74.3-83.1)/82.9%(95% CI:74.8-89.2),准确性分别为 77.8%(95% CI:74.7-80.8)/75.8%(95% CI:72-79.3)/79.0%(95% CI:72.5-84.6)。

结论

IBDN 的两种分类的诊断准确性均高于专家。我们的 AI 系统具有足够的价值,可以为下一代临床实践做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验