Suppr超能文献

人工智能的反馈提高了初级内镜医师对胃部病变组织学预测的学习效果。

Feedback from artificial intelligence improved the learning of junior endoscopists on histology prediction of gastric lesions.

作者信息

Lui Thomas K L, Wong Kenneth K Y, Mak Loey L Y, To Elvis W P, Tsui Vivien W M, Deng Zijie, Guo Jiaqi, Ni Li, Cheung Michael K S, Leung Wai K

机构信息

Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China.

Department of Computer Science, University of Hong Kong, Hong Kong, China.

出版信息

Endosc Int Open. 2020 Feb;8(2):E139-E146. doi: 10.1055/a-1036-6114. Epub 2020 Jan 22.

Abstract

Artificial intelligence (AI)-assisted image classification has been shown to have high accuracy on endoscopic diagnosis. We evaluated the potential effects of use of an AI-assisted image classifier on training of junior endoscopists for histological prediction of gastric lesions. An AI image classifier was built on a convolutional neural network with five convolutional layers and three fully connected layers A Resnet backbone was trained by 2,000 non-magnified endoscopic gastric images. The independent validation set consisted of another 1,000 endoscopic images from 100 gastric lesions. The first part of the validation set was reviewed by six junior endoscopists and the prediction of AI was then disclosed to three of them (Group A) while the remaining three (Group B) were not provided this information. All endoscopists reviewed the second part of the validation set independently. The overall accuracy of AI was 91.0 % (95 % CI: 89.2-92.7 %) with 97.1 % sensitivity (95 % CI: 95.6-98.7%), 85.9 % specificity (95 % CI: 83.0-88.4 %) and 0.91 area under the ROC (AUROC) (95 % CI: 0.89-0.93). AI was superior to all junior endoscopists in accuracy and AUROC in both validation sets. The performance of Group A endoscopists but not Group B endoscopists improved on the second validation set (accuracy 69.3 % to 74.7 %;  = 0.003). The trained AI image classifier can accurately predict presence of neoplastic component of gastric lesions. Feedback from the AI image classifier can also hasten the learning curve of junior endoscopists in predicting histology of gastric lesions.

摘要

人工智能(AI)辅助图像分类在内镜诊断中已显示出高准确率。我们评估了使用AI辅助图像分类器对初级内镜医师进行胃病变组织学预测培训的潜在效果。基于具有五个卷积层和三个全连接层的卷积神经网络构建了一个AI图像分类器。使用2000张未放大的内镜胃图像训练了一个Resnet主干网络。独立验证集由来自100个胃病变的另外1000张内镜图像组成。验证集的第一部分由六名初级内镜医师进行评估,然后将AI的预测结果透露给其中三名医师(A组),而其余三名医师(B组)未获得此信息。所有内镜医师独立评估验证集的第二部分。AI的总体准确率为91.0%(95%CI:89.2 - 92.7%),敏感性为97.1%(95%CI:95.6 - 98.7%),特异性为85.9%(95%CI:83.0 - 88.4%),ROC曲线下面积(AUROC)为0.91(95%CI:0.89 - 0.93)。在两个验证集中,AI在准确率和AUROC方面均优于所有初级内镜医师。A组内镜医师在第二个验证集上的表现有所改善,而B组内镜医师则没有(准确率从69.3%提高到74.7%;P = 0.003)。经过训练的AI图像分类器可以准确预测胃病变的肿瘤成分。AI图像分类器的反馈也可以加快初级内镜医师预测胃病变组织学的学习曲线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7c/6976335/60e643027d5f/10-1055-a-1036-6114-i1642ei1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验