Jang Yu Jin, Kim Ji-Hee
Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, 16419, Suwon, Gyeonggi-do, Republic of Korea.
Department of Energy Science, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, 16419, Suwon, Gyeonggi-do, Republic of Korea.
Chem Asian J. 2022 Jul 15;17(14):e202200265. doi: 10.1002/asia.202200265. Epub 2022 Jun 10.
Singlet fission, a rapid exciton doubling process via inverse Auger recombination, is recognized as one of the most practical and feasible means for overcoming the Shockley-Queisser limit. Singlet fission solar cells are generally developed by integrating photon downconversion organic semiconductors into conventional photovoltaic devices to break the maximum photovoltaic response of the host semiconductors by virtue of extra triplet excitons. In this regard, proper matching of two different semiconductors and heterointerface engineering are both crucial for highly efficient singlet fission solar cells. Therefore, the aim of this study is to review the prerequisite conditions for efficient triplet transfer at the heterointerfaces and thus highlight the robust spin and valley degrees of freedom of transition metal dichalcogenides with the ultimate goal of stimulating research into next-generation singlet fission solar cells.