Liu Shimiao
Changchun University of Finance and Economics, Changchun, Jilin, China.
PLoS One. 2025 Aug 1;20(8):e0328013. doi: 10.1371/journal.pone.0328013. eCollection 2025.
Financial data prediction and risk assessment represent a complex multi-task problem that requires effective handling of time-series data and multi-dimensional features. Traditional models struggle to simultaneously capture temporal dependencies, global information, and intricate nonlinear relationships, resulting in limited prediction accuracy. To address this challenge, we propose LTR-Net, a multi-module deep learning model that combines LSTM, Transformer, and ResNet. LTR-Net effectively processes the multi-dimensional features and dynamic changes in financial data by incorporating a temporal dependency modeling module, a global information capture module, and a deep feature extraction module. Experimental results demonstrate that LTR-Net significantly outperforms existing mainstream models, including LSTM, GRU, Transformer, and DeepAR, across multiple financial datasets. On the Kaggle Financial Distress Prediction Dataset and the Yahoo Finance Stock Market Data, LTR-Net exhibits higher accuracy, stability, and robustness across various metrics such as MSE, RMSE, MAE, and AUC. Ablation experiments further validate the indispensability of each module within LTR-Net, confirming the pivotal roles of the LSTM, Transformer, and ResNet modules in financial data analysis. LTR-Net not only enhances the accuracy of financial data prediction but also exhibits strong generalization capabilities, making it adaptable to data analysis and risk assessment tasks in other domains.
金融数据预测和风险评估是一个复杂的多任务问题,需要有效地处理时间序列数据和多维度特征。传统模型难以同时捕捉时间依赖性、全局信息和复杂的非线性关系,导致预测准确性有限。为应对这一挑战,我们提出了LTR-Net,这是一种结合了长短期记忆网络(LSTM)、变换器(Transformer)和残差网络(ResNet)的多模块深度学习模型。LTR-Net通过纳入时间依赖性建模模块、全局信息捕捉模块和深度特征提取模块,有效地处理金融数据中的多维度特征和动态变化。实验结果表明,在多个金融数据集上,LTR-Net显著优于现有的主流模型,包括LSTM、门控循环单元(GRU)、Transformer和深度自回归(DeepAR)。在Kaggle金融困境预测数据集和雅虎财经股票市场数据上,LTR-Net在均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和曲线下面积(AUC)等各种指标上表现出更高的准确性、稳定性和鲁棒性。消融实验进一步验证了LTR-Net中每个模块的不可或缺性,证实了LSTM、Transformer和ResNet模块在金融数据分析中的关键作用。LTR-Net不仅提高了金融数据预测的准确性,还表现出强大的泛化能力,使其适用于其他领域的数据分析和风险评估任务。