Suppr超能文献

基于MRI的影像组学特征预测局部晚期直肠癌新辅助化疗的治疗反应:一项单中心前瞻性研究

MRI-Based Radiomics Features to Predict Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer: A Single Center, Prospective Study.

作者信息

Chen Bi-Yun, Xie Hui, Li Yuan, Jiang Xin-Hua, Xiong Lang, Tang Xiao-Feng, Lin Xiao-Feng, Li Li, Cai Pei-Qiang

机构信息

Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.

Department of Colorectal, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Front Oncol. 2022 May 12;12:801743. doi: 10.3389/fonc.2022.801743. eCollection 2022.

Abstract

This is a prospective, single center study aimed to evaluate the predictive power of peritumor and intratumor radiomics features assessed using T2 weight image (T2WI) of baseline magnetic resonance imaging (MRI) in evaluating pathological good response to NAC in patients with LARC (including Tany N+ or T3/4a Nany but not T4b). In total, 137 patients with LARC received NAC between April 2014 and August 2020. All patients were undergoing contrast-enhanced MRI and 129 patients contained small field of view (sFOV) sequence which were performed prior to treatment. The tumor regression grade standard was based on pathological response. The training and validation sets (n=91 vs. n=46) were established by random allocation of the patients. Receiver operating characteristic curve (ROC) analysis was applied to estimate the performance of different models based on clinical characteristics and radiomics features obtained from MRI, including peritumor and intratumor features, in predicting treatment response; these effects were calculated using the area under the curve (AUC). The performance and agreement of the nomogram were estimated using calibration plots. In total, 24 patients (17.52%) achieved a complete or near-complete response. For the individual radiomics model in the validation set, the performance of peritumor radiomics model in predicting treatment response yield an AUC of 0.838, while that of intratumor radiomics model is 0.805, which show no statically significant difference between then(P>0.05). The traditional and selective clinical features model shows a poor predictive ability in treatment response (AUC=0.596 and 0.521) in validation set. The AUC of combined radiomics model was improved compared to that of the individual radiomics models in the validation sets (AUC=0.844). The combined clinic-radiomics model yield the highest AUC (0.871) in the validation set, although it did not improve the performance of the radiomics model for predicting treatment response statically (P>0.05). Good agreement and discrimination were observed in the nomogram predictions. Both peritumor and intratumor radiomics features performed similarly in predicting a good response to NAC in patients with LARC. The clinic-radiomics model showed the best performance in predicting treatment response.

摘要

这是一项前瞻性单中心研究,旨在评估使用基线磁共振成像(MRI)的T2加权图像(T2WI)评估的瘤周和瘤内放射组学特征在评估局部晚期直肠癌(LARC,包括任何T分期N+或T3/4a任何N分期,但不包括T4b)患者对新辅助化疗(NAC)的病理良好反应中的预测能力。2014年4月至2020年8月期间,共有137例LARC患者接受了NAC。所有患者均接受了对比增强MRI检查,其中129例患者在治疗前进行了小视野(sFOV)序列检查。肿瘤退缩分级标准基于病理反应。通过随机分配患者建立训练集和验证集(n = 91 vs. n = 46)。应用受试者操作特征曲线(ROC)分析来评估基于临床特征和从MRI获得的放射组学特征(包括瘤周和瘤内特征)的不同模型在预测治疗反应方面的性能;这些效应使用曲线下面积(AUC)进行计算。使用校准图评估列线图的性能和一致性。共有24例患者(17.52%)达到完全或接近完全缓解。对于验证集中的单个放射组学模型,瘤周放射组学模型在预测治疗反应方面的性能产生的AUC为0.838,而瘤内放射组学模型为0.805,两者之间无统计学显著差异(P>0.05)。传统和选择性临床特征模型在验证集中对治疗反应的预测能力较差(AUC = 0.596和0.521)。与验证集中的单个放射组学模型相比,联合放射组学模型的AUC有所提高(AUC = 0.844)。联合临床-放射组学模型在验证集中产生的AUC最高(0.871),尽管它在预测治疗反应方面并未显著提高放射组学模型的性能(P>0.05)。在列线图预测中观察到良好的一致性和区分度。瘤周和瘤内放射组学特征在预测LARC患者对NAC的良好反应方面表现相似。临床-放射组学模型在预测治疗反应方面表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f9b/9133669/033c37034333/fonc-12-801743-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验