Awati Abuduheiremu, Yang Ran, Shi Ting, Zhou Shan, Zhang Xin, Zeng Hui, Lv Yaokang, Liang Kang, Xie Lei, Zhu Dazhang, Liu Mingxian, Kong Biao
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202407491. doi: 10.1002/anie.202407491. Epub 2024 Jun 17.
Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.
由二维(2D)纳米片组装而成的离子选择性纳米通道膜在利用盐度梯度进行能量转换方面具有巨大潜力。然而,它们面临着表面电荷密度不足带来的挑战,这会损害渗透选择性和耐久性。在此,我们展示了一种新型的空位工程化、缺氧镍钴层状双氢氧化物(NiCoLDH)/纤维素纳米纤维包裹的碳纳米管(VOLDH/CNF-CNT)复合膜。该膜具有丰富的埃级阳离子选择性纳米通道,通过空位工程和界面超组装的协同组合设计并制备而成。复合膜的层间自由间距约为3.62 Å,这验证了膜的尺寸排阻选择性。这一策略经密度泛函理论(DFT)计算和实验数据验证,提高了亲水性和表面电荷密度,从而与钾离子产生强烈相互作用,有利于降低离子传输阻力并具有出色的电荷选择性。当用于人工河水|海水盐度梯度发电机时,它可提供5.35 W/m的高功率密度,并具有长期耐久性(20,000秒),这比原始的NiCoLDH膜高出近400%。此外,它还表现出对pH值和温度敏感的离子传输行为,为优化提供了更多机会。这项工作为高性能盐度梯度能量转换奠定了基础,并强调了空位工程和超组装在定制二维纳米材料用于各种先进纳米流体能量装置方面的潜力。