Huang Lingzhi, Wu Haoyu, Ding Li, Caro Jürgen, Wang Haihui
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3 A, 30167, Hannover, Deutschland.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202314638. doi: 10.1002/anie.202314638. Epub 2024 Jan 4.
Ion-selective membranes are crucial in various chemical and physiological processes. Numerous studies have demonstrated progress in separating monovalent/multivalent ions, but efficient monovalent/monovalent ion sieving remains a great challenge due to their same valence and similar radii. Here, this work reports a two-dimensional (2D) MXene membrane with super-aligned slit-shaped nanochannels with ultrahigh monovalent ion selectivity. The MXene membrane is prepared by applying shear forces to a liquid-crystalline (LC) MXene dispersion, which is conducive to the highly-ordered stacking of the MXene nanosheets. The obtained LC MXene membrane (LCMM) exhibits ultrahigh selectivities toward Li /Na , Li /K , and Li /Rb separation (≈45, ≈49, and ≈59), combined with a fast Li transport with a permeation rate of ≈0.35 mol m h , outperforming the state-of-the-art membranes. Theoretical calculations indicate that in MXene nanochannels, the hydrated Li with a tetrahedral shape has the smallest diameter among the monovalent ions, contributing to the highest mobility. Besides, the weakest interaction is found between hydrated Li and MXene channels which also contributes to the ultrafast permeation of Li through the super-aligned MXene channels. This work demonstrates the capability of MXene membranes in monovalent ion separation, which also provides a facile and general strategy to fabricate lamellar membranes in a large scale.
离子选择性膜在各种化学和生理过程中至关重要。众多研究已在分离单价/多价离子方面取得进展,但由于单价离子价态相同且半径相似,高效的单价/单价离子筛分仍然是一个巨大挑战。在此,本文报道了一种具有超高单价离子选择性的二维(2D)MXene膜,其具有超对齐的狭缝状纳米通道。该MXene膜是通过对液晶(LC)MXene分散体施加剪切力制备的,这有利于MXene纳米片的高度有序堆叠。所获得的LC MXene膜(LCMM)在Li⁺/Na⁺、Li⁺/K⁺和Li⁺/Rb⁺分离方面表现出超高选择性(分别约为45、约为49和约为59),同时Li⁺具有快速传输能力,渗透速率约为0.35 mol m⁻² h⁻¹,性能优于现有最先进的膜。理论计算表明,在MXene纳米通道中,四面体形状的水合Li⁺在单价离子中直径最小,这使其具有最高的迁移率。此外,水合Li⁺与MXene通道之间的相互作用最弱,这也有助于Li⁺通过超对齐的MXene通道实现超快渗透。这项工作展示了MXene膜在单价离子分离方面的能力,也为大规模制备层状膜提供了一种简便通用的策略。