Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, Victoria, 3220, Australia.
ChemSusChem. 2022 Oct 10;15(19):e202200933. doi: 10.1002/cssc.202200933. Epub 2022 Aug 8.
Inadequate mass transportation of semipermeable membranes causes poor osmotic energy conversion from salinity-gradient. Here, the lamellar graphene oxide membranes (GOMs) constructed with numerous fusiform-like nanochannels, that are pre-filled with negatively charged polyanion electrolytes, to both enhance the ion permeability and ion selectivity of the membrane for energy harvest from the salinty gradient, were developed. The as-prepared membrane achieved the maximum output power density of ∼4.94 W m under a 50 fold salinity gradient, which is 3.5 fold higher than that of pristine GOM. The enhancement could be ascribed to the synergistic impact of the expanded nanochannels and the enhanced space charge density. Via feeding with the artificial salinity water and monovalent cation electrolytes, the system could realise the power output up to 14.7 W m and 34.1 W m , respectively. Overall, this material design strategy could provide an alternative concept to effectively enhance ion transport of other two-dimensional (2D) membranes for specific purposes.
半透膜传质不足导致盐差能转化效率低下。本研究构建了具有大量梭形纳米通道的层状氧化石墨烯膜(GOM),纳米通道预先填充带负电荷的聚阴离子电解质,以提高膜的离子透过率和离子选择性,从而从盐度梯度中获取能量。所制备的膜在 50 倍盐度梯度下实现了约 4.94 W·m-1 的最大输出功率密度,比原始 GOM 提高了 3.5 倍。这种增强可以归因于扩展纳米通道和增强空间电荷密度的协同影响。通过进料人工盐度水和单价阳离子电解质,该系统分别可实现 14.7 W·m 和 34.1 W·m 的功率输出。总的来说,这种材料设计策略为有效增强其他二维(2D)膜的特定离子传输提供了一种替代概念。