Jayaraman Arthi
Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
ACS Macro Lett. 2020 May 19;9(5):656-665. doi: 10.1021/acsmacrolett.0c00134. Epub 2020 Apr 17.
Macromolecular materials with directional interactions such as hydrogen bonds exhibit numerous attractive features in terms of structure, thermodynamics, and dynamics. Besides enabling precise tuning of desirable geometries in the assembled state (e.g., programmable coordination numbers depending on the valency of the directional interaction), mixing in a blend/composite through stabilization via hydrogen bonds between the various components, hydrogen bonds can also impart responsiveness to external stimuli (e.g., temperature, pH). In biomacromolecules (e.g., proteins, DNA, polysaccharides), hydrogen bonds play a key role in stabilizing secondary and tertiary structures, which in turn define the function of these macromolecules. In this Viewpoint, I present the challenges, successes, and opportunities for molecular modeling and simulations to conduct fundamental and application-focused research on macromolecular materials with hydrogen bonding interactions. The past successes and limitations of atomistic simulations are discussed first, followed by highlights from recent developments in coarse-grained modeling and their use in studies of (synthetic and biologically relevant) macromolecular materials. Model development focused on polynucleotides (e.g., DNA, RNA, etc.), polypeptides, polysaccharides, and synthetic polymers at experimentally relevant conditions are highlighted. This viewpoint ends with potential future directions for macromolecular modeling and simulations with other types of directional interactions beyond hydrogen bonding.
具有诸如氢键等定向相互作用的高分子材料在结构、热力学和动力学方面展现出众多吸引人的特性。除了能够在组装状态下精确调控理想的几何形状(例如,根据定向相互作用的化合价实现可编程的配位数),通过各组分之间的氢键稳定作用在共混物/复合材料中实现混合外,氢键还能赋予材料对外部刺激(如温度、pH值)的响应性。在生物大分子(如蛋白质、DNA、多糖)中,氢键在稳定二级和三级结构方面起着关键作用,而这些结构又反过来决定了这些大分子的功能。在这篇观点文章中,我阐述了分子建模与模拟在对具有氢键相互作用的高分子材料开展基础研究和应用导向研究时所面临的挑战、取得的成功以及机遇。首先讨论了原子模拟过去的成功与局限性,接着重点介绍了粗粒化建模的最新进展及其在(合成的和与生物相关的)高分子材料研究中的应用。突出了在实验相关条件下针对多核苷酸(如DNA、RNA等)、多肽、多糖和合成聚合物的模型开发。这篇观点文章最后展望了除氢键外具有其他类型定向相互作用的高分子建模与模拟的潜在未来方向。