Sheng Qiwen, Uddin Nezam, Zhou Bohan, Wang Xiaoli, Han Ming
Opt Lett. 2022 Jun 1;47(11):2718-2721. doi: 10.1364/OL.457989.
We demonstrate the fabrication of fiber-optic Fabry-Perot interferometer (FPI) temperature sensors by bonding a small silicon diaphragm to the tip of an optical fiber using low melting point glass powders heated by a 980 nm laser on an aerogel substrate. The heating laser is delivered to the silicon FPI using an optical fiber, while the silicon temperature is being monitored using a 1550 nm white-light system, providing localized heating with precise temperature control. The use of an aerogel substrate greatly improves the heating efficiency by reducing the thermal loss of the bonding parts to the ambient environment. A desirable temperature for bonding can be achieved with relatively small heating laser power. The bonding process is carried out in an open space at room temperature for convenient optical alignment. The precise temperature control ensures minimum perturbation to the optical alignment and no induced thermal damage to the optical parts during the bonding process. For demonstration, we fabricated a low-finesse and high-finesse silicon FPI sensor and characterized their measurement resolution and temperature capability. The results show that the fabrication method has a good potential for high-precision fabrication of fiber-optic sensors.
我们展示了通过在气凝胶衬底上使用由980 nm激光加热的低熔点玻璃粉末将小硅膜片粘结到光纤尖端来制造光纤法布里-珀罗干涉仪(FPI)温度传感器。加热激光通过光纤传输到硅FPI,同时使用1550 nm白光系统监测硅的温度,从而实现局部加热并进行精确的温度控制。气凝胶衬底的使用通过减少粘结部件向周围环境的热损失,极大地提高了加热效率。使用相对较小的加热激光功率就能达到理想的粘结温度。粘结过程在室温的开放空间中进行,便于光学对准。精确的温度控制确保在粘结过程中对光学对准的扰动最小,并且不会对光学部件造成热损伤。为了进行演示,我们制造了一个低精细度和一个高精细度的硅FPI传感器,并对它们的测量分辨率和温度性能进行了表征。结果表明,该制造方法在高精度制造光纤传感器方面具有良好的潜力。