Suppr超能文献

基于 Patch-Tensor 低秩重建的高分辨率稳态 fMRI 数据的采集

High-Resolution Oscillating Steady-State fMRI Using Patch-Tensor Low-Rank Reconstruction.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4357-4368. doi: 10.1109/TMI.2020.3017450. Epub 2020 Nov 30.

Abstract

The goals of fMRI acquisition include high spatial and temporal resolutions with a high signal to noise ratio (SNR). Oscillating Steady-State Imaging (OSSI) is a new fMRI acquisition method that provides large oscillating signals with the potential for high SNR, but does so at the expense of spatial and temporal resolutions. The unique oscillation pattern of OSSI images makes it well suited for high-dimensional modeling. We propose a patch-tensor low-rank model to exploit the local spatial-temporal low-rankness of OSSI images. We also develop a practical sparse sampling scheme with improved sampling incoherence for OSSI. With an alternating direction method of multipliers (ADMM) based algorithm, we improve OSSI spatial and temporal resolutions with a factor of 12 acquisition acceleration and 1.3 mm isotropic spatial resolution in prospectively undersampled experiments. The proposed model yields high temporal SNR with more activation than other low-rank methods. Compared to the standard grad- ient echo (GRE) imaging with the same spatial-temporal resolution, 3D OSSI tensor model reconstruction demonstrates 2 times higher temporal SNR with 2 times more functional activation.

摘要

fMRI 采集的目标包括高空间和时间分辨率以及高信噪比 (SNR)。 振荡稳态成像 (OSSI) 是一种新的 fMRI 采集方法,它提供了具有高 SNR 潜力的大振荡信号,但这是以牺牲空间和时间分辨率为代价的。OSSI 图像的独特振荡模式使其非常适合高维建模。我们提出了一种补丁张量低秩模型来利用 OSSI 图像的局部时空低秩性。我们还为 OSSI 开发了一种具有改进的采样不相关性的实用稀疏采样方案。通过基于交替方向乘子法 (ADMM) 的算法,我们在前瞻性欠采样实验中以 12 倍的采集加速和 1.3 毫米各向同性空间分辨率提高了 OSSI 的空间和时间分辨率。与具有相同时空分辨率的标准梯度回波 (GRE) 成像相比,3D OSSI 张量模型重建在具有 2 倍功能激活的情况下具有 2 倍更高的时间 SNR。

相似文献

8
Subspace-constrained approaches to low-rank fMRI acceleration.基于子空间约束的低秩 fMRI 加速方法。
Neuroimage. 2021 Sep;238:118235. doi: 10.1016/j.neuroimage.2021.118235. Epub 2021 Jun 3.

引用本文的文献

2
Tensor Methods in Biomedical Image Analysis.生物医学图像分析中的张量方法
J Med Signals Sens. 2024 Jul 10;14:16. doi: 10.4103/jmss.jmss_55_23. eCollection 2024.

本文引用的文献

6
Learning-Based Compressive MRI.基于学习的压缩磁共振成像。
IEEE Trans Med Imaging. 2018 Jun;37(6):1394-1406. doi: 10.1109/TMI.2018.2832540.
9
High-resolution dynamic P-MRSI using a low-rank tensor model.基于低秩张量模型的高分辨率动态 P-MRSI 技术
Magn Reson Med. 2017 Aug;78(2):419-428. doi: 10.1002/mrm.26762. Epub 2017 May 28.
10
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition.超越低秩+稀疏:多尺度低秩矩阵分解
IEEE J Sel Top Signal Process. 2016 Jun;10(4):672-687. doi: 10.1109/JSTSP.2016.2545518. Epub 2016 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验