Suppr超能文献

用纳米受限聚电解质刷功能化的嵌段聚合物膜实现亚纳米级选择性。

Block Polymer Membranes Functionalized with Nanoconfined Polyelectrolyte Brushes Achieve Sub-Nanometer Selectivity.

作者信息

Zhang Yizhou, Mulvenna Ryan A, Qu Siyi, Boudouris Bryan W, Phillip William A

机构信息

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.

出版信息

ACS Macro Lett. 2017 Jul 18;6(7):726-732. doi: 10.1021/acsmacrolett.7b00278. Epub 2017 Jun 23.

Abstract

The well-defined nanostructure of membranes manufactured from self-assembled block polymers enables highly selective separations; however, recent efforts to push the pore size of block polymer-based membranes to the lower end of the size spectrum have only been moderately successful for a variety of reasons. For instance, the conformational changes of the stimuli-responsive functional groups lining the pore walls of some block polymer membranes result in varied pore sizes that limit their operational range. Here, we overcome this challenge through the directed design of the third moiety of an A-B-C triblock polymer. The use of this macromolecular design paradigm allows for the preparation of a 500 nm thick polyisoprene--polystyrene--poly(2-acrylamido-ethane-1,1-disfulonic acid) (PI-PS-PADSA) coating atop a hollow fiber membrane support. This nanoporous test bed, which exhibits an average pore radius of 1 nm, demonstrates an extremely high solute selectivity by fully gating solutes that have only an 8 Å size difference, a separation that is based solely on a sieving mechanism. Furthermore, the nanoscale structural characteristics of the solvated PADSA pore walls are elucidated by quantifying the rejection of neutral solutes and calculating the hydraulic permeability values in solutions of high ionic strength (1 mM ≤ ≤ 3 M) and over a broad range of solution pH (1 ≤ pH ≤ 13). These key results provide a solid foundation for defining structure-property-performance relationships in the emerging area of nanoporous triblock polymer thin films. Moreover, the successful demonstration of the test bed separation device offers a tangible means by which to manufacture next-generation nanofiltration membranes that require a robust performance profile over a dynamic range of conditions.

摘要

由自组装嵌段聚合物制成的膜具有明确的纳米结构,能够实现高度选择性分离;然而,由于各种原因,最近将基于嵌段聚合物的膜的孔径推至尺寸谱低端的努力仅取得了一定程度的成功。例如,一些嵌段聚合物膜孔壁上的刺激响应官能团的构象变化导致孔径变化,限制了它们的操作范围。在此,我们通过对A-B-C三嵌段聚合物的第三部分进行定向设计克服了这一挑战。使用这种大分子设计范式,可以在中空纤维膜支撑体上制备500纳米厚的聚异戊二烯-聚苯乙烯-聚(2-丙烯酰胺基乙烷-1,1-二磺酸)(PI-PS-PADSA)涂层。这个纳米多孔测试平台的平均孔径为1纳米,通过完全筛分尺寸仅相差8埃的溶质,展示了极高的溶质选择性,这种分离完全基于筛分机制。此外,通过量化中性溶质的截留率并计算高离子强度(1 mM≤≤3 M)和宽溶液pH范围(1≤pH≤13)溶液中的水力渗透率值,阐明了溶剂化PADSA孔壁的纳米级结构特征。这些关键结果为确定纳米多孔三嵌段聚合物薄膜新兴领域中的结构-性能-性能关系奠定了坚实基础。此外,测试平台分离装置的成功展示提供了一种切实可行的方法,用以制造在动态条件范围内需要强大性能的下一代纳滤膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验