Liu Xinhong, Ouimet Jonathan A, Hoffman John R, Xu Jialing, Phillip William A, Dowling Alexander W
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
ACS Appl Mater Interfaces. 2024 Oct 30;16(43):59216-59233. doi: 10.1021/acsami.4c11749. Epub 2024 Oct 19.
Multifunctional, nanostructured membranes hold immense promise for overcoming permeability-selectivity trade-offs and enhancing membrane durability in challenging molecule separations. Following the fabrication of copolymer membranes, additive manufacturing technologies can introduce reactive inks onto substrates to modify pore wall chemistries. However, large-scale implementation is hindered by a lack of systematic optimization. This study addresses this challenge by elucidating the membrane functionalization mechanisms and optimal manufacturing conditions using a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. Leveraging a data science toolkit (e.g., nonlinear regression, uncertainty quantification, identifiability analyses, model selection, and design of experiments), we developed two mathematical models: (1) algebraic equations to predict equilibrium concentrations after preparing reactive inks by mixing copper sulfate, ascorbic acid (AA), and an alkynyl-terminated reactant; and (2) reaction-diffusion partial differential equations (PDEs) to describe the functionalization process. The ink preparation chemistry with side reactions was validated through pH and UV-vis measurements, while the diffusion and kinetic parameters in the PDE model were calibrated using time-series conversion of the azide moieties inferred from Fourier-transform infrared spectroscopy. This modeling framework avoids redundant experimental efforts and offers a functionalization protocol for scaling up designs. Ink optimization problems were proposed to reduce the use of expensive and environmentally insulting ink materials, i.e., Cu(II), while ensuring the desired chemical distributions. With optimal ink formulation Cu(II)/AA/alkyne = 1:1:2 identified, we uncovered trade-offs between Cu(II) usage and functionalization time; for example, in continuous roll-to-roll manufacturing with a conserved functionalization bath setup, our optimal operational conditions to achieve ≥90% functionalization enable at least a 20% reduction in total copper investment compared to previous experimental results. The data science-enabled ink optimization framework is extendable for on-demand multifunctional membranes in numerous future applications such as metal recovery from wastewater and brine.
多功能纳米结构膜在克服渗透率 - 选择性权衡以及提高具有挑战性的分子分离中的膜耐久性方面具有巨大潜力。在制备共聚物膜之后,增材制造技术可以将反应性油墨引入到基底上,以改变孔壁化学性质。然而,由于缺乏系统的优化,大规模实施受到阻碍。本研究通过使用铜(I)催化的叠氮化物 - 炔烃环加成(CuAAC)“点击”反应阐明膜功能化机制和最佳制造条件来应对这一挑战。利用数据科学工具包(例如非线性回归、不确定性量化、可识别性分析、模型选择和实验设计),我们开发了两个数学模型:(1)代数方程,用于预测通过混合硫酸铜、抗坏血酸(AA)和炔基封端的反应物制备反应性油墨后的平衡浓度;(2)反应 - 扩散偏微分方程(PDE),用于描述功能化过程。通过pH和紫外 - 可见光谱测量验证了具有副反应的油墨制备化学过程,而PDE模型中的扩散和动力学参数则使用从傅里叶变换红外光谱推断出的叠氮基团的时间序列转换进行校准。这种建模框架避免了冗余的实验工作,并提供了一种用于扩大设计规模的功能化方案。提出了油墨优化问题,以减少昂贵且对环境有害的油墨材料(即Cu(II))的使用,同时确保所需的化学分布。通过确定最佳油墨配方Cu(II)/ AA / 炔烃 = 1:1:2,我们发现了Cu(II)用量与功能化时间之间的权衡;例如,在具有守恒功能化浴设置的连续卷对卷制造中,与先前的实验结果相比,我们实现≥90%功能化的最佳操作条件可使总铜投资至少减少20%。基于数据科学的油墨优化框架可扩展用于未来众多应用中的按需多功能膜,例如从废水和盐水中回收金属。