Suppr超能文献

热稳定抗真菌几丁质酶的结构分析与构建。

Structural Analysis and Construction of a Thermostable Antifungal Chitinase.

机构信息

Department of Bioscience and Biotechnology, University of the Ryukyusgrid.267625.2, Senbaru, Nishihara, Okinawa, Japan.

Graduate School of Science, Osaka Prefecture University, Gakuencho, Sakai, Osaka, Japan.

出版信息

Appl Environ Microbiol. 2022 Jun 28;88(12):e0065222. doi: 10.1128/aem.00652-22. Epub 2022 Jun 2.

Abstract

Chitin is a biopolymer of -acetyl-d-glucosamine with β-1,4-bond and is the main component of arthropod exoskeletons and the cell walls of many fungi. Chitinase (EC 3.2.1.14) is an enzyme that hydrolyzes the β-1,4-bond in chitin and degrades chitin into oligomers. It has been found in a wide range of organisms. Chitinase from Gazyumaru () latex exhibits antifungal activity by degrading chitin in the cell wall of fungi and is expected to be used in medical and agricultural fields. However, the enzyme's thermostability is an important factor; chitinase is not thermostable enough to maintain its activity under the actual application conditions. In addition to the fact that thermostable chitinases exhibiting antifungal activity can be used under various conditions, they have some advantages for the production process and long-term preservation, which are highly demanded in industrial use. We solved the crystal structure of chitinase to explore the target sites to improve its thermostability. We rationally introduced proline residues, a disulfide bond, and salt bridges in the chitinase using protein-engineering methods based on the crystal structure and sequence alignment among other chitinases. As a result, we successfully constructed the thermostable mutant chitinases rationally with high antifungal and specific activities. The results provide a useful strategy to enhance the thermostability of this enzyme family. We solved the crystal structure of the chitinase from Gazyumaru () latex exhibiting antifungal activity. Furthermore, we demonstrated that the thermostable mutant enzyme with a melting temperature () 6.9°C higher than wild type (WT) and a half-life at 60°C that is 15 times longer than WT was constructed through 10 amino acid substitutions, including 5 proline residues substitutions, making disulfide bonding, and building a salt bridge network in the enzyme. These mutations do not affect its high antifungal activity and chitinase activity, and the principle for the construction of the thermostable chitinase was well explained by its crystal structure. Our results provide a useful strategy to enhance the thermostability of this enzyme family and to use the thermostable mutant as a seed for antifungal agents for practical use.

摘要

几丁质是一种由β-1,4-糖苷键连接的乙酰-d-葡萄糖胺组成的生物聚合物,是节肢动物外骨骼和许多真菌细胞壁的主要成分。几丁质酶(EC 3.2.1.14)是一种能够水解几丁质中β-1,4-键并将几丁质降解为低聚物的酶。它存在于广泛的生物体中。来自 Gazyumaru()乳胶的几丁质酶通过降解真菌细胞壁中的几丁质表现出抗真菌活性,有望在医学和农业领域得到应用。然而,酶的热稳定性是一个重要因素;几丁质酶的热稳定性不足以使其在实际应用条件下保持活性。除了具有抗真菌活性的耐热几丁质酶可以在各种条件下使用之外,它们在生产过程和长期保存方面具有一些优势,这在工业用途中是非常需要的。我们通过晶体结构解析来探索提高其热稳定性的目标部位。我们基于晶体结构和其他几丁质酶的序列比对,采用蛋白质工程方法,在几丁质酶中合理引入脯氨酸残基、二硫键和盐桥。结果,我们成功地构建了具有高抗真菌和特异性活性的理性耐热突变体几丁质酶。该结果为提高该酶家族的热稳定性提供了一个有用的策略。我们解析了具有抗真菌活性的 Gazyumaru()乳胶几丁质酶的晶体结构。此外,我们通过 10 个氨基酸取代,包括 5 个脯氨酸取代、形成二硫键和构建酶的盐桥网络,构建了一个比野生型(WT)高 6.9°C 的熔点(Tm)和半衰期在 60°C 下是 WT 的 15 倍的耐热突变体酶。这些突变不影响其高抗真菌活性和几丁质酶活性,其晶体结构很好地解释了耐热几丁质酶的构建原理。我们的结果为提高该酶家族的热稳定性并将耐热突变体用作实际抗真菌剂的种子提供了一个有用的策略。

相似文献

1
Structural Analysis and Construction of a Thermostable Antifungal Chitinase.热稳定抗真菌几丁质酶的结构分析与构建。
Appl Environ Microbiol. 2022 Jun 28;88(12):e0065222. doi: 10.1128/aem.00652-22. Epub 2022 Jun 2.

引用本文的文献

本文引用的文献

6
Construction of Thermophilic Xylanase and Its Structural Analysis.嗜热木聚糖酶的构建及其结构分析
Biochemistry. 2016 Aug 9;55(31):4399-409. doi: 10.1021/acs.biochem.6b00414. Epub 2016 Jul 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验