Suppr超能文献

使用分子力学计算评估 RNA 二核苷酸单磷酸的堆积的几何定义。

Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations.

机构信息

Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.

Department of Chemistry, Scripps Research Institute Florida, Jupiter, Florida 33458, United States.

出版信息

J Chem Theory Comput. 2022 Jun 14;18(6):3637-3653. doi: 10.1021/acs.jctc.2c00178. Epub 2022 Jun 2.

Abstract

RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.

摘要

小分子对 RNA 的调节是一种新的药理学方法,其中确定 RNA 基序的结构特性被认为是开发能够靶向 RNA 结构以控制疾病的药物的有前途的方法。然而,由于 RNA 分子的复杂性和动态性质,使用实验方法确定 RNA 结构并不总是可行的,并且使用力场的计算模型可以提供重要的见解。力场的质量将决定预测与实验可观察值的吻合程度。堆积是 RNA 中的一种结构特性,主要源于伦敦色散力,伦敦色散力是量子力学的,并且通过非键相互作用包含在分子力学力场中。几何描述用于确定两个残基是否堆积,从而通过统计力学计算 RNA 二核苷酸单磷酸酯 (DNMP) 的堆积自由能,以便与实验热力学数据进行比较。在这里,我们使用两种不同力场(RNA-IL 和 ff99OL3)产生的 16 个 RNA DNMP 的分子动力学 (MD) 轨迹对四种不同的堆积定义进行了基准测试,并表明我们的堆积定义与实验热力学数据更好地相关。在 300 K 时,在 RNA CC、CU、UC、AG、GA 和 GG 中观察到了在 0.2 kcal/mol 精度内的预测,而嘌呤-嘧啶和嘧啶-嘌呤 DNMP 的堆积状态分别被低估和高估。此外,两种力场都无法很好地预测 RNA UU DNMP 的种群分布,这意味着需要进一步修改力场。我们进一步讨论了每个 RNA 力场预测的差异。最后,我们表明离散路径采样 (DPS) 计算可以提供有价值的信息并补充 MD 模拟。我们建议使用 RNA DNMP 的实验热力学数据作为测试 RNA 力场的基准。

相似文献

本文引用的文献

2
The Limitless Future of RNA Therapeutics.RNA疗法的无限未来。
Front Bioeng Biotechnol. 2021 Mar 18;9:628137. doi: 10.3389/fbioe.2021.628137. eCollection 2021.
5
RNA Therapy: Current Status and Future Potential.RNA疗法:现状与未来潜力
Chonnam Med J. 2020 May;56(2):87-93. doi: 10.4068/cmj.2020.56.2.87. Epub 2020 May 25.
7
Small Molecule Rescue and Glycosidic Conformational Analysis of the Twister Ribozyme.小分子挽救与扭结核酶的糖苷构象分析。
Biochemistry. 2019 Dec 3;58(48):4857-4868. doi: 10.1021/acs.biochem.9b00742. Epub 2019 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验