Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America.
Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America.
PLoS Negl Trop Dis. 2022 Jun 2;16(6):e0010436. doi: 10.1371/journal.pntd.0010436. eCollection 2022 Jun.
Widespread application of insecticide remains the primary form of control for Chagas disease in Central America, despite only temporarily reducing domestic levels of the endemic vector Triatoma dimidiata and having little long-term impact. Recently, an approach emphasizing community feedback and housing improvements has been shown to yield lasting results. However, the additional resources and personnel required by such an intervention likely hinders its widespread adoption. One solution to this problem would be to target only a subset of houses in a community while still eliminating enough infestations to interrupt disease transfer. Here we develop a sequential sampling framework that adapts to information specific to a community as more houses are visited, thereby allowing us to efficiently find homes with domiciliary vectors while minimizing sampling bias. The method fits Bayesian geostatistical models to make spatially informed predictions, while gradually transitioning from prioritizing houses based on prediction uncertainty to targeting houses with a high risk of infestation. A key feature of the method is the use of a single exploration parameter, α, to control the rate of transition between these two design targets. In a simulation study using empirical data from five villages in southeastern Guatemala, we test our method using a range of values for α, and find it can consistently select fewer homes than random sampling, while still bringing the village infestation rate below a given threshold. We further find that when additional socioeconomic information is available, much larger savings are possible, but that meeting the target infestation rate is less consistent, particularly among the less exploratory strategies. Our results suggest new options for implementing long-term T. dimidiata control.
尽管杀虫剂的广泛应用仍然是中美洲控制恰加斯病的主要形式,但它只能暂时降低当地传播媒介三带喙库蚊的水平,而且长期影响很小。最近,强调社区反馈和住房改善的方法已被证明能产生持久的效果。然而,这种干预措施所需的额外资源和人员可能阻碍了其广泛采用。解决这个问题的一种方法是仅针对社区中的一部分房屋进行干预,同时仍然消灭足够多的感染点以中断疾病传播。在这里,我们开发了一个顺序抽样框架,该框架可以根据更多房屋的访问信息进行自适应调整,从而使我们能够有效地找到有家庭传播媒介的房屋,同时最大限度地减少抽样偏差。该方法将贝叶斯地质统计学模型拟合到特定于社区的信息中,从而进行空间上的预测,同时逐渐从基于预测不确定性的优先考虑房屋过渡到针对高感染风险的房屋。该方法的一个关键特征是使用单个探索参数 α 来控制这两个设计目标之间的转换速度。在使用来自危地马拉东南部五个村庄的经验数据进行的模拟研究中,我们使用一系列 α 值来测试我们的方法,发现它可以比随机抽样选择更少的房屋,同时仍将村庄感染率控制在给定阈值以下。我们还发现,当有额外的社会经济信息可用时,可以节省更多的资源,但达到目标感染率的一致性较差,尤其是在那些探索性策略较弱的情况下。我们的研究结果为实施长期三带喙库蚊控制提供了新的选择。