Lizotte Daniel J, Bowling Michael, Murphy Susan A
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada,
J Mach Learn Res. 2012 Nov;13(Nov):3253-3295.
We present a general and detailed development of an algorithm for finite-horizon fitted-Q iteration with an arbitrary number of reward signals and linear value function approximation using an arbitrary number of state features. This includes a detailed treatment of the 3-reward function case using triangulation primitives from computational geometry and a method for identifying globally dominated actions. We also present an example of how our methods can be used to construct a real-world decision aid by considering symptom reduction, weight gain, and quality of life in sequential treatments for schizophrenia. Finally, we discuss future directions in which to take this work that will further enable our methods to make a positive impact on the field of evidence-based clinical decision support.
我们展示了一种用于有限时域拟合Q迭代算法的通用且详细的发展情况,该算法具有任意数量的奖励信号,并使用任意数量的状态特征进行线性值函数逼近。这包括使用计算几何中的三角剖分原语对三奖励函数情况进行详细处理,以及一种识别全局占优动作的方法。我们还给出了一个示例,说明如何通过在精神分裂症的序贯治疗中考虑症状减轻、体重增加和生活质量,将我们的方法用于构建现实世界的决策辅助工具。最后,我们讨论了这项工作未来的发展方向,这将进一步使我们的方法能够对循证临床决策支持领域产生积极影响。