Suppr超能文献

基于深度图像先验的数字X射线图像去噪的掩码联合双边滤波

Masked Joint Bilateral Filtering via Deep Image Prior for Digital X-Ray Image Denoising.

作者信息

Wu Qianyu, Tang Hui, Liu Hanxi, Chen Yang Chen

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):4008-4019. doi: 10.1109/JBHI.2022.3179652. Epub 2022 Aug 11.

Abstract

Medical image denoising faces great challenges. Although deep learning methods have shown great potential, their efficiency is severely affected by millions of trainable parameters. The non-linearity of neural networks also makes them difficult to be understood. Therefore, existing deep learning methods have been sparingly applied to clinical tasks. To this end, we integrate known filtering operators into deep learning and propose a novel Masked Joint Bilateral Filtering (MJBF) via deep image prior for digital X-ray image denoising. Specifically, MJBF consists of a deep image prior generator and an iterative filtering block. The deep image prior generator produces plentiful image priors by a multi-scale fusion network. The generated image priors serve as the guidance for the iterative filtering block, which is utilized for the actual edge-preserving denoising. The iterative filtering block contains three trainable Joint Bilateral Filters (JBFs), each with only 18 trainable parameters. Moreover, a masking strategy is introduced to reduce redundancy and improve the understanding of the proposed network. Experimental results on the ChestX-ray14 dataset and real data show that the proposed MJBF has achieved superior performance in terms of noise suppression and edge preservation. Tests on the portability of the proposed method demonstrate that this denoising modality is simple yet effective, and could have a clinical impact on medical imaging in the future.

摘要

医学图像去噪面临巨大挑战。尽管深度学习方法已显示出巨大潜力,但其效率受到数百万可训练参数的严重影响。神经网络的非线性也使其难以理解。因此,现有的深度学习方法在临床任务中的应用一直很有限。为此,我们将已知的滤波算子集成到深度学习中,并通过深度图像先验提出了一种用于数字X射线图像去噪的新型掩码联合双边滤波(MJBF)。具体而言,MJBF由深度图像先验生成器和迭代滤波块组成。深度图像先验生成器通过多尺度融合网络产生丰富的图像先验。生成的图像先验作为迭代滤波块的指导,该块用于实际的边缘保留去噪。迭代滤波块包含三个可训练的联合双边滤波器(JBF),每个滤波器只有18个可训练参数。此外,引入了一种掩码策略以减少冗余并提高对所提出网络的理解。在ChestX-ray14数据集和真实数据上的实验结果表明,所提出的MJBF在噪声抑制和边缘保留方面取得了优异的性能。对所提出方法的便携性测试表明,这种去噪方式简单而有效,并且未来可能会对医学成像产生临床影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验