Department of Computer Science and Engineering, Jansons Institute of Technology, Coimbatore, Tamil Nadu, India.
Electronics and Communication Engineering, PET Engineering College, Vallioor, Tamil Nadu, India.
Med Biol Eng Comput. 2024 Oct;62(10):3043-3056. doi: 10.1007/s11517-024-03122-y. Epub 2024 May 18.
Medical image denoising has been a subject of extensive research, with various techniques employed to enhance image quality and facilitate more accurate diagnostics. The evolution of denoising methods has highlighted impressive results but struggled to strike equilibrium between noise reduction and edge preservation which limits its applicability in various domains. This paper manifests the novel methodology that integrates an adaptive masking strategy, transformer-based U-Net Prior generator, edge enhancement module, and modified non-local block (MNLB) for denoising brain MRI clinical images. The adaptive masking strategy maintains the vital information through dynamic mask generation while the prior generator by capturing hierarchical features regenerates the high-quality prior MRI images. Finally, these images are fed to the edge enhancement module to boost structural information by maintaining crucial edge details, and the MNLB produces the denoised output by deriving non-local contextual information. The comprehensive experimental assessment is performed by employing two datasets namely the brain tumor MRI dataset and Alzheimer's dataset for diverse metrics and compared with conventional denoising approaches. The proposed denoising methodology achieves a PSNR of 40.965 and SSIM of 0.938 on the Alzheimer's dataset and also achieves a PSNR of 40.002 and SSIM of 0.926 on the brain tumor MRI dataset at a noise level of 50% revealing its supremacy in noise minimization. Furthermore, the impact of different masking ratios on denoising performance is analyzed which reveals that the proposed method showed PSNR of 40.965, SSIM of 0.938, MAE of 5.847, and MSE of 3.672 at the masking ratio of 60%. Moreover, the findings pave the way for the advancement of clinical image processing, facilitating precise detection of tumors in clinical MRI images.
医学图像去噪一直是研究的热点,各种技术被用于提高图像质量,以便更准确地进行诊断。去噪方法的发展取得了令人瞩目的成果,但在降低噪声和保留边缘之间难以达到平衡,这限制了其在各个领域的适用性。本文提出了一种新的方法,该方法结合了自适应掩蔽策略、基于变压器的 U-Net 先验生成器、边缘增强模块和改进的非局部块(MNLB),用于对脑部 MRI 临床图像进行去噪。自适应掩蔽策略通过动态掩蔽生成来保留重要信息,而先验生成器通过捕获分层特征来重建高质量的先验 MRI 图像。最后,这些图像被送入边缘增强模块,通过保持关键边缘细节来增强结构信息,而 MNLB 通过提取非局部上下文信息来生成去噪输出。通过使用两个数据集,即脑部肿瘤 MRI 数据集和阿尔茨海默病数据集,进行了广泛的实验评估,使用多种指标进行了比较,并与传统的去噪方法进行了比较。该去噪方法在阿尔茨海默病数据集中的 PSNR 为 40.965,SSIM 为 0.938,在噪声水平为 50%的情况下,在脑部肿瘤 MRI 数据集中的 PSNR 为 40.002,SSIM 为 0.926,表明其在噪声最小化方面具有优势。此外,还分析了不同掩蔽比对去噪性能的影响,结果表明,该方法在掩蔽比为 60%时,PSNR 为 40.965,SSIM 为 0.938,MAE 为 5.847,MSE 为 3.672。此外,这些发现为临床图像处理的发展铺平了道路,有助于在临床 MRI 图像中更准确地检测肿瘤。