Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
Sci Rep. 2022 Oct 20;12(1):17540. doi: 10.1038/s41598-022-22530-4.
Low-dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in routine CT acquisitions while maintaining high image quality. Recently, deep learning (DL)-based methods were introduced, outperforming conventional denoising algorithms on this task due to their high model capacity. However, for the transition of DL-based denoising to clinical practice, these data-driven approaches must generalize robustly beyond the seen training data. We, therefore, propose a hybrid denoising approach consisting of a set of trainable joint bilateral filters (JBFs) combined with a convolutional DL-based denoising network to predict the guidance image. Our proposed denoising pipeline combines the high model capacity enabled by DL-based feature extraction with the reliability of the conventional JBF. The pipeline's ability to generalize is demonstrated by training on abdomen CT scans without metal implants and testing on abdomen scans with metal implants as well as on head CT data. When embedding RED-CNN/QAE, two well-established DL-based denoisers in our pipeline, the denoising performance is improved by 10%/82% (RMSE) and 3%/81% (PSNR) in regions containing metal and by 6%/78% (RMSE) and 2%/4% (PSNR) on head CT data, compared to the respective vanilla model. Concluding, the proposed trainable JBFs limit the error bound of deep neural networks to facilitate the applicability of DL-based denoisers in low-dose CT pipelines.
低剂量计算机断层扫描(CT)去噪算法旨在实现常规 CT 采集时的患者剂量降低,同时保持高图像质量。最近,基于深度学习(DL)的方法被引入,由于其高模型容量,在这项任务上优于传统的去噪算法。然而,为了将基于 DL 的去噪方法过渡到临床实践,这些数据驱动的方法必须在所见的训练数据之外稳健地推广。因此,我们提出了一种混合去噪方法,该方法由一组可训练的联合双边滤波器(JBF)与基于卷积的 DL 去噪网络相结合,以预测导向图像。我们提出的去噪管道结合了基于 DL 的特征提取所提供的高模型容量和传统 JBF 的可靠性。通过在没有金属植入物的腹部 CT 扫描上进行训练并在带有金属植入物的腹部扫描和头部 CT 数据上进行测试,证明了该管道的泛化能力。当在我们的管道中嵌入 RED-CNN/QAE 这两个成熟的基于 DL 的去噪器时,与各自的香草模型相比,在包含金属的区域中,去噪性能提高了 10%/82%(均方根误差(RMSE))和 3%/81%(峰值信噪比(PSNR)),在头部 CT 数据上提高了 6%/78%(RMSE)和 2%/4%(PSNR)。总之,所提出的可训练 JBF 将深度学习神经网络的误差限制在一定范围内,以促进基于 DL 的去噪器在低剂量 CT 管道中的应用。