Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China.
Microsoft Research Asia, 100080, Beijing, China.
Nat Commun. 2022 Jun 2;13(1):3091. doi: 10.1038/s41467-022-30714-9.
Graph neural network (GNN) is effective in modeling high-order interactions and has been widely used in various personalized applications such as recommendation. However, mainstream personalization methods rely on centralized GNN learning on global graphs, which have considerable privacy risks due to the privacy-sensitive nature of user data. Here, we present a federated GNN framework named FedPerGNN for both effective and privacy-preserving personalization. Through a privacy-preserving model update method, we can collaboratively train GNN models based on decentralized graphs inferred from local data. To further exploit graph information beyond local interactions, we introduce a privacy-preserving graph expansion protocol to incorporate high-order information under privacy protection. Experimental results on six datasets for personalization in different scenarios show that FedPerGNN achieves 4.0% ~ 9.6% lower errors than the state-of-the-art federated personalization methods under good privacy protection. FedPerGNN provides a promising direction to mining decentralized graph data in a privacy-preserving manner for responsible and intelligent personalization.
图神经网络 (GNN) 在建模高阶交互方面非常有效,已广泛应用于推荐等各种个性化应用中。然而,主流的个性化方法依赖于全局图上的集中式 GNN 学习,由于用户数据的隐私敏感性,这存在相当大的隐私风险。在这里,我们提出了一个名为 FedPerGNN 的联邦 GNN 框架,用于有效和隐私保护的个性化。通过一种隐私保护的模型更新方法,我们可以基于从本地数据推断出的去中心化图来协同训练 GNN 模型。为了进一步利用局部交互之外的图信息,我们引入了一种隐私保护的图扩展协议,在保护隐私的情况下纳入高阶信息。在不同场景下的六个个性化数据集上的实验结果表明,在良好的隐私保护下,FedPerGNN 比最先进的联邦个性化方法的错误率低 4.0%~9.6%。FedPerGNN 为以负责任和智能的个性化方式挖掘去中心化图数据提供了一个有前景的方向。